Sumberdaya Alam Lithium Indonesia

Salafudin Salafudin

Sari


ABSTRAK

Lithium adalah salah satu mineral yang mempunyai permintaan yang paling tinggi dalam Revolusi Industri Keempat. Indonesia yang kekayaan alam nikelnya besar, ingin menjadi negara penghasil baterai. Oleh karena itu, diperlukan investigasi sumber bahan baku utama lainnya dalam produksi baterai. Sumber daya bahan baku utama baterai adalah Lithium. Penyelidikan litium sebagai sumber bahan baku di Indonesia telah dilakukan melalui tinjauan pustaka. Sumber daya alam litium ditemukan di air laut, Brine, mineral, dan tanah liat. Endapan yang mengandung Mineral Lithium terdapat di beberapa tempat di Indonesia dalam jumlah dan konsentrasi yang kecil. Sebagai negara yang dilalui cincin api, Indonesia memiliki banyak mata air panas dan Brine yang mengandung Lithium. Tanah liat yang mengandung litium ditemukan dalam bentuk slurry (brine dan lumpur tanah liat), seperti pada lumpur Bleduk Kuwu dan lumpur Sidoharjo. Bittern sebagai limbah industri garam memiliki potensi besar untuk dikembangkan sebagai sumber Lithium di Indonesia

Kata kunci: Lithium, Sumber Air Panas, Brine, Clay, Bittern  

 

ABSTRACT

Lithium is one of most demanding minerals in The Fourth Industrial Revolution. Indonesia whose large Nickel natural resources, wants to become a battery producing country. Therefore an investigation of other main raw material sources in battery production is needed. The main raw material resource for batteries is Lithium. The investigation of lithium as raw material resource in Indonesia has been carried out through a literature review. Lithium natural resources are found in sea water, Brine, minerals, and clay. Mineral Lithium containing deposits are found in several places in Indonesia in small amounts and concentrations. As a country through which the ring of fire passes, Indonesia has a lot of hot spring water and Brine containing Lithium. Clay containing lithium is found in the form of slurry ( brine and clay mud), such as in the Bleduk Kuwu mud and the Sidoharjo mud. Bittern as a waste of salt industries has great potential to be developed as a source of Lithium in Indonesia

Keywords: Lithium, Hot Spring Water, Brine, Clay, Bittern  


Kata Kunci


Lithium, Sumber Air Panas, Brine, Clay, Bittern

Teks Lengkap:

PDF

Referensi


Azpilcueta, D.C. , Leon, S. H, Cisternas, L.A, (2020).†Current and Future Global Lithium Production Till 2025â€, The Open Chemical Engineering Journal, 14, pp 36-51.

Swain,B., (2017). “Recovery and Recycling of Lithium: A reviewâ€, Separation and Purification Tecnology Journal, 172, pp.388-403

Speir, J., Contestabile, M., Houari, Y., Gross, R., (2014). “The Future of Lithium Availability for electric Vehicle Batteriesâ€, Renewable and Sustainable Energy Reviews 35, pp 183-193.

Luis, A, Gil-Alanan, Monge, M, (2019). â€Lithium: Production and Eastimated Consumption. Evidence of Persistenceâ€, Resources Policy 60, pp 198-202.

Florena,F.F.,(2016).†Floatability Study of Graphite ore from Southeast Sulawesi (Indonesia)â€, AIP Conference Proceeding 1712, 050005

Kisman, (2014).†Prospeksi Unsur Tanah Jarang / Rare Earth Elements (REE) di Kabupaten Banggai Provinsi Sulawesi Tengahâ€, Laporan Pusat Sumber Daya Mineral, Batubara dan Panas Bumi, Badan Geologi

Natasha,N.C., (2018).†Ekstraksi Lithium dari β- Spodumen Hasil Dekomposisi Batuan Sekismika Indonesia Menggunakan Aditif Natrium Sulfatâ€, Metalurgi, 2, pp 69-78.

Suharyanto,A. ( 2019).†Decomposition of Spodumene Mineral in Granitic Rocks from South Kalimantan – Indonesia bu Potassium Sulphateâ€, IOP Conf Series: Material Science and Engineering 541, 012044

Supriyana, E., (2019).†Gravity data of porong regions, Sidoarjo in the Interpretation geology Structure and deformation of Subsurfaceâ€, IOP Conf. Series:Earth and Environmental Science 311.

R. Wirosoedarmo, R.,(2020).†Effect of Pyrolysis Temperature on Biochar to Reduce Cadmium Concentration in Impacted Lapindo Mudsoil in Sidoarjo, East Javaâ€, Poll Res, 39 (2), pp 442-449.

Taufik,M., , (2009). †Digital Elevation Model (DEM) Aster untuk Menghitung Volume Lumpur Lapindoâ€, Geoid, 04 No.2, pp 166-170.

Noerochim,L., (2016). †Recovery of Lithium from Geothermal Fluid at Lumpur Sidoarjo by Adsorption Methodâ€, J.Eng Technol.Sci, 48 No2, pp. 200-206.

Noerochim,L., (2016). †Lithium Manganese Oxide nanoparticles synthesized by hydrothermal method as adsorbent of Lithium Recovery Process from geothermal Fluid of Lumpur Sidoarjoâ€, AIP Conference Proceeding 1725,020054

Rohmah, M., (2018). †Lithium Recovery from Bledug Kuwu Mud Volcano Using Water Leaching Methodâ€, IEEE International Conference on Innovative Research and Development.

Lalasari, L.H.,(2019). †Effect of Leaching Temperatur on Lithium recovery from Li-Montmorillonite (Bledug Kuwu’s Mud)â€, The 2nd Mineral Processing and Technology International Conference.

Sumarno, (2012). †Recovery Garam Lithium dari Air Asin (Brine) dengan Metoda Presipitasiâ€, Teknik, 33(2).

Sulistiyono, E., (2018). †Study of Lithium Extraction from Brine Water, Bledug Kuwu, Indonesia by the Precipitation Series of Oxalic Acid and Carbonate Sodiumâ€, AIP Conference Proceeding 1964, 020007.

Manao, R.D., (2012). †Recovery Garam Lithium pada Air Tua (bittern) dengan Metode Presipitasiâ€, Jurnal Teknologi Kimia dan Industri, 1, 292-297.

Apriani, M., (2018). †Physicochemical properties of Sea Water and Bittern in Indonesia Quality Improvement and Potential Resources Utilization for Marine Environmental Sustainabilityâ€, Journal of Ecological Engineering, 19, 1-10.

Boedihardi, R.M., (1987). †Interpretation of Tangkuban Perahu Geophysical Data (West Java – Indonesia)â€, Project for Diploma in Geothermal Energy Technology, Geothermal Institute, University of Auckland.

Purnomo, B.J. dan Pichler, T., (2014). †Geothermal systems on the island of Java, Indonesiaâ€, Journal of Volcanology and Geothermal Research 285, 47-59.

Lalasari, L.H., Andriyah, L., Arini, T., Sulistiyono, E., Prasetyo, E., Firdiyono, Natasha, N.C., (2020). â€Litihium Extraction from Brine Water Tirtasanita Bogor, Indonesia by Evaporation Methodâ€, Journal of Physics: Conference Series, 1450, 012013.

Nasution, A., Kartadinata, M. N., Kobayashi, T., Siregar, D., Sutaningsih, E., Hadisantono, R., Kadarstia, E., (2004). †Geology Age Dating, and Geochemistry of the Tangkuban Parahu Geothermal Area, West Java, Indonesiaâ€, Journal of the Geothermal Research Society of Japan, 26(3), 285-303.

PSDMBP (Pusat Sumber Daya Mineral, Batubara, dan Panas Bumi), Badan Geologi., (2017). †Potensi Panas bumi Indonesiaâ€, Jakarta: Direktorat Jendral EBTKE.

Rahayudin, Y., Kashiwaya, K., Susmanto, A., Tada, Y., Iskandar, I., and Koike, K., (2018). †Estimation of Fluid-rock Interaction Process and Recharge Area of the Tampomas Geothermal Field, West Java, Indonesia by Water Chemistryâ€, Proceedings 43rd Workshop on Geothermal Reservoir Engineering Stanford University.

Ramadhan, Y., Channel, K., and Herdianita, N. R., (2013). â€Hotwater Geochemistry for Interpreting The Condition of Geothermal Reservoir, Dieng Plateau Case, Banjarnegara -Wonosobo Regency, Central Java.Indonesianâ€, Journal of Geology, 8(2), 89- 96.

Suprapto, S.M., (2020). â€Potensi Kandungan Unsur Kimia Ekonomis pada Larutan Panas Bumi dengan Studi Kasus di PLTP Dieng, Kabupaten Wonosobo dan Kabupaten BanjarNegaraâ€, Buletin Sumber Daya Geologi, 15(2), 89-100.

Mahon, T., Harvey, C., and Crosby, D., (2000). †The Chemistry of Geothermal Fluids in Indonesia and Their Relationship to Water and Vapour Dominated Systemsâ€, Proceeding World Geothermal Congress, 1389-1394.

Herdianita, N. R., Julinawati, T., and Amorita, I. E.,(2010). †Hydrogeochemistry of Thermal Water from Surface Manifestation at Gunung Ciremai and Its Surrounding, Cirebon, West Java – Indonesiaâ€, Proceeding World Geothermal Congress.

Alam, B. Y. C. S., Itoi, R., Taguchi, S., and Yamashiro, R., (2014). â€Hydrogeochemical Characterization and the Origin of Hot Springs in the Cidanau Geothermal Field, West Java, Indonesiaâ€, Proceeding Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University.

Mussofan, W., Powell, T., Sutrisno, L., and Sihotang, M. A. (2015). â€Geochemistry Model of Chloride Springs Origin near Sea Coastal Area: Case Study from Rajabasa Geothermal Fieldâ€, Proceeding World Geothermal Congress.

Sunaryo, Hantono, D., Ganda, S., and Nugroho., (1993). â€Exploration Result of the Ulubelu Geothermal Prospect, South Sumatra, Indonesiaâ€, Proceeding 15th NZ Geothermal Workshop.

Gunderson, R. P., Dobson, P. F., Sharp, W. D., Pudjianto, R., and Hasibuan, A., (1995).,†Geology and Thermal Features of the Sarulla Contract Area, North Sumatra, Indonesiaâ€, Proceeding World Geothermal Congress.

Nukman, M. and Hochstein, M. P., (2018). â€The Sipoholon Geothermal Field and Adjacent Geothermal System along the North-Central Sumatra Fault Belt, Indonesia: Review on Geochemisty, Ttectonics, and Natural Heat Lossâ€, Journal of Asian Earth Sciences 170, 316-328.

Dahlan, Eddy, M., Anna, Y., (2011). â€Monitoring Sumur-Sumur Eksplorasi Lapangan Panasbumi Mataloko, Provinsi Nusa Tenggara Timurâ€, Proceeding Hasil Kegiatan Pusat Sumber Daya Geologi Tahun 2011.




DOI: https://doi.org/10.26760/jrh.v5i2.178-187

Refbacks

  • Saat ini tidak ada refbacks.



Alamat redaksi dan tata usaha:

Lembaga Penelitian dan Pengabdian Masyarakat Institut Teknologi Nasional
Fakultas, gedung 14 Lantai 3
Jl. PHH. Mustapa 23 Bandung 40124
Tlp. 022-7272215 Pes. 159, Fax. 022-7202892,
e-mail: hrekayasa@itenas.ac.id


Terindeks:

   


 STATISTIK PENGUNJUNG
Flag Counter
 

Lihat Statistik

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License