Penerapan Data Standardization dan Multilayer Perceptron pada Identifikasi Website Phishing
Sari
Website phishing adalah salah satu masalah utama dalam bidang keamanan website. Website phishing dibuat oleh orang yang tidak bertanggungjawab untuk mengambil informasi pribadi seseorang contohnya seorang hacker atau cracker. Teknik umum yang digunakan pada phishing yaitu manipulasi Uniform Resource Locator (URL), pemalsuan halaman situs web, dan pop up window. Pada tahun 2019, APWG (Anti-Phishing Working Group) mendeteksi kasus phishing sebanyak 162.155 kasus di dunia. Pada penelitian ini, melakukan eksperimen dengan menerapkan metode Data Standardization dan Multilayer Perceptron (MLP) untuk mendeteksi website phishing. Eksperimen dilakukan menggunakan 2 model yaitu model A dan model B. Untuk melihat performa dari model MLP yang dihasilkan dapat dilihat menggunakan tingkat accuracy, recall, precision, f1-score dan specificity. Selain itu juga dapat dilihat menggunakan confusion matrix untuk melihat kinerja pada model MLP. Pada penelitian ini menghasilkan bahwa model B merupakan model terbaik dengan mendapatkan tingkat accuracy 95.7% , recall 97.3%, precision 94.0%, f1-score 95.6% dan specificity 97.3%.
Kata kunci: multilayer perceptron, data standardization, website phishing
AbstractPhishing websites are one of the main problems in the field of website security. Phishing websites are created by people who are not responsible for taking someone's personal information. Common techniques used in phishing are Uniform Resource Locator (URL) manipulation, website page spoofing, and pop up windows. In 2019, APWG (Anti-Phishing Working Group) detected 162,155 cases of phishing in the world. In this study, conducting experiments by using Data Standardization and Multilayer Perceptron (MLP) methods to detect phishing websites. Experiments were carried out using 2 models, namely model A and B. To see the performance of MLP model, it can be seen using score of accuracy, recall, precision, f1-score and specificity. In addition, it can also be seen using the confusion matrix to see the performance of the MLP model. This research shows that model B is the best model with 95.7% accuracy, 97.3% recall, 94.0% precision, 95.6% f1-score and 97.3% specificity.
Keywords: multilayer perceptron, data standardization, website phishing
Teks Lengkap:
PDFReferensi
Abusaimeh, H., & Alshareef, Y. (2021). Detecting the Phishing Website with the Highest Accuracy. TEM Journal, 10(2), 947–953. https://doi.org/10.18421/TEM102-58
Al-Ahmadi, S., & Lasloum, T. (2020). PDMLP: Phishing Detection using Multilayer Perceptron. International Journal of Network Security & Its Applications, 12(3), 59–72. https://doi.org/10.5121/ijnsa.2020.12304
Ali, W. (2017). Phishing Website Detection based on Supervised Machine Learning with Wrapper Features Selection. International Journal of Advanced Computer Science and Applications, 8(9), 72–78. https://doi.org/10.14569/ijacsa.2017.080910
Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research, 9(March), 1–17. https://doi.org/10.3389/fenrg.2021.652801
Hannousse, A., & Yahiouche, S. (2021). Towards benchmark datasets for machine learning based website phishing detection: An experimental study. Engineering Applications of Artificial Intelligence, 104, 1–21. https://doi.org/10.1016/j.engappai.2021.104347
Hartono, Sadikin, M., Sari, D. M., Anzelina, N., Lestari, S., & Dari, W. (2020). Implementation of Artifical Neural Networks with Multilayer Perceptron for Analysis of Acceptance of Permanent Lecturers. Jurnal Mantik, 4(4), 1389–1396.
Hosseinzadeh, M., Ahmed, O. H., Ghafour, M. Y., Safara, F., hama, H. kamaran, Ali, S., Vo, B., & Chiang, H. Sen. (2021). A multiple multilayer perceptron neural network with an adaptive learning algorithm for thyroid disease diagnosis in the internet of medical things. Journal of Supercomputing, 77(4), 3616–3637. https://doi.org/10.1007/s11227-020-03404-w
Kalaharsha, P., & Mehtre, B. M. (2021). Detecting Phishing Sites -- An Overview. 1–13. http://arxiv.org/abs/2103.12739
M, S., R V, J., Blessy Ida Gla, & Priyadharshini. (2020). A REVIEW ON PHISHING WEBSITE DETECTION USING MACHINE LEARNING. Journal of Critical Reviews, 7(19), 4847–4853.
Mahajan, R., & Siddavatam, I. (2018). Phishing Website Detection using Machine Learning Algorithms. International Journal of Computer Applications, 181(23), 45–47. https://doi.org/10.5120/ijca2018918026
Nguyen, Q. H., Ly, H. B., Ho, L. S., Al-Ansari, N., Van Le, H., Tran, V. Q., Prakash, I., & Pham, B. T. (2021). Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/4832864
Rojas, M. G., Olivera, A. C., & Vidal, P. J. (2022). Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification. Array, 14(April), 100173. https://doi.org/10.1016/j.array.2022.100173
Sen, S., Sugiarto, D., & Rochman, A. (2020). Komparasi Metode Multilayer Perceptron (MLP) dan Long Short Term Memory (LSTM) dalam Peramalan Harga Beras. Ultimatics, XII(1), 35.
Tripathy, A. K., Sarkar, M., Sahoo, J. P., Li, K.-C., & Chinara, S. (2021). Advances in and Machine Computing Distributed Learning. In Lecture Notes in Networks and Systems (Vol. 127). Springer International Publishing. https://doi.org/10.1007/978-981-15-4218-3_15
Vanneschi, L., & Castelli, M. (2018). Multilayer perceptrons. In Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics (Vols. 1–3). https://doi.org/10.1016/B978-0-12-809633-8.20339-7
Vujović, Ž. (2021). Classification Model Evaluation Metrics. International Journal of Advanced Computer Science and Applications, 12(6), 599–606. https://doi.org/10.14569/IJACSA.2021.0120670
DOI: https://doi.org/10.26760/mindjournal.v7i2.111-123
Refbacks
- Saat ini tidak ada refbacks.
____________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2528-0902
diterbitkan oleh:
Informatika Institut Teknologi Nasional Bandung
Alamat : Gedung 2 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 181)Â Fax. 7202892
Email : mind.journal@itenas.ac.id
____________________________________________________________
Statistik Pengunjung :
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.