Penerapan Data Standardization dan Multilayer Perceptron pada Identifikasi Website Phishing

YUSUP MIFTAHUDDIN, MOHAMAD MUQIIT FATURRAHMAN

Sari


Abstrak

Website phishing adalah salah satu masalah utama dalam bidang keamanan website. Website phishing dibuat oleh orang yang tidak bertanggungjawab untuk mengambil informasi pribadi seseorang contohnya seorang hacker atau cracker. Teknik umum yang digunakan pada phishing yaitu manipulasi Uniform Resource Locator (URL), pemalsuan halaman situs web, dan pop up window. Pada tahun 2019, APWG (Anti-Phishing Working Group) mendeteksi kasus phishing sebanyak 162.155 kasus di dunia. Pada penelitian ini, melakukan eksperimen dengan menerapkan metode Data Standardization dan Multilayer Perceptron (MLP) untuk mendeteksi website phishing. Eksperimen dilakukan menggunakan 2 model yaitu model A dan model B. Untuk melihat performa dari model MLP yang dihasilkan dapat dilihat menggunakan tingkat accuracy, recall, precision, f1-score dan specificity. Selain itu juga dapat dilihat menggunakan confusion matrix untuk melihat kinerja pada model MLP. Pada penelitian ini menghasilkan bahwa model B merupakan model terbaik dengan mendapatkan tingkat accuracy 95.7% , recall 97.3%, precision 94.0%, f1-score 95.6% dan specificity 97.3%.

Kata kunci: multilayer perceptron, data standardization, website phishing

Abstract

Phishing websites are one of the main problems in the field of website security. Phishing websites are created by people who are not responsible for taking someone's personal information. Common techniques used in phishing are Uniform Resource Locator (URL) manipulation, website page spoofing, and pop up windows. In 2019, APWG (Anti-Phishing Working Group) detected 162,155 cases of phishing in the world. In this study, conducting experiments by using Data Standardization and Multilayer Perceptron (MLP) methods to detect phishing websites. Experiments were carried out using 2 models, namely model A and B. To see the performance of MLP model, it can be seen using score of accuracy, recall, precision, f1-score and specificity. In addition, it can also be seen using the confusion matrix to see the performance of the MLP model. This research shows that model B is the best model with 95.7% accuracy, 97.3% recall, 94.0% precision, 95.6% f1-score and 97.3% specificity.

Keywords: multilayer perceptron, data standardization, website phishing


Teks Lengkap:

PDF

Referensi


Abusaimeh, H., & Alshareef, Y. (2021). Detecting the Phishing Website with the Highest Accuracy. TEM Journal, 10(2), 947–953. https://doi.org/10.18421/TEM102-58

Al-Ahmadi, S., & Lasloum, T. (2020). PDMLP: Phishing Detection using Multilayer Perceptron. International Journal of Network Security & Its Applications, 12(3), 59–72. https://doi.org/10.5121/ijnsa.2020.12304

Ali, W. (2017). Phishing Website Detection based on Supervised Machine Learning with Wrapper Features Selection. International Journal of Advanced Computer Science and Applications, 8(9), 72–78. https://doi.org/10.14569/ijacsa.2017.080910

Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research, 9(March), 1–17. https://doi.org/10.3389/fenrg.2021.652801

Hannousse, A., & Yahiouche, S. (2021). Towards benchmark datasets for machine learning based website phishing detection: An experimental study. Engineering Applications of Artificial Intelligence, 104, 1–21. https://doi.org/10.1016/j.engappai.2021.104347

Hartono, Sadikin, M., Sari, D. M., Anzelina, N., Lestari, S., & Dari, W. (2020). Implementation of Artifical Neural Networks with Multilayer Perceptron for Analysis of Acceptance of Permanent Lecturers. Jurnal Mantik, 4(4), 1389–1396.

Hosseinzadeh, M., Ahmed, O. H., Ghafour, M. Y., Safara, F., hama, H. kamaran, Ali, S., Vo, B., & Chiang, H. Sen. (2021). A multiple multilayer perceptron neural network with an adaptive learning algorithm for thyroid disease diagnosis in the internet of medical things. Journal of Supercomputing, 77(4), 3616–3637. https://doi.org/10.1007/s11227-020-03404-w

Kalaharsha, P., & Mehtre, B. M. (2021). Detecting Phishing Sites -- An Overview. 1–13. http://arxiv.org/abs/2103.12739

M, S., R V, J., Blessy Ida Gla, & Priyadharshini. (2020). A REVIEW ON PHISHING WEBSITE DETECTION USING MACHINE LEARNING. Journal of Critical Reviews, 7(19), 4847–4853.

Mahajan, R., & Siddavatam, I. (2018). Phishing Website Detection using Machine Learning Algorithms. International Journal of Computer Applications, 181(23), 45–47. https://doi.org/10.5120/ijca2018918026

Nguyen, Q. H., Ly, H. B., Ho, L. S., Al-Ansari, N., Van Le, H., Tran, V. Q., Prakash, I., & Pham, B. T. (2021). Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/4832864

Rojas, M. G., Olivera, A. C., & Vidal, P. J. (2022). Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification. Array, 14(April), 100173. https://doi.org/10.1016/j.array.2022.100173

Sen, S., Sugiarto, D., & Rochman, A. (2020). Komparasi Metode Multilayer Perceptron (MLP) dan Long Short Term Memory (LSTM) dalam Peramalan Harga Beras. Ultimatics, XII(1), 35.

Tripathy, A. K., Sarkar, M., Sahoo, J. P., Li, K.-C., & Chinara, S. (2021). Advances in and Machine Computing Distributed Learning. In Lecture Notes in Networks and Systems (Vol. 127). Springer International Publishing. https://doi.org/10.1007/978-981-15-4218-3_15

Vanneschi, L., & Castelli, M. (2018). Multilayer perceptrons. In Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics (Vols. 1–3). https://doi.org/10.1016/B978-0-12-809633-8.20339-7

Vujović, Ž. (2021). Classification Model Evaluation Metrics. International Journal of Advanced Computer Science and Applications, 12(6), 599–606. https://doi.org/10.14569/IJACSA.2021.0120670




DOI: https://doi.org/10.26760/mindjournal.v7i2.111-123

Refbacks

  • Saat ini tidak ada refbacks.


____________________________________________________________

ISSN (cetak) : 2338-8323  |  ISSN (elektronik) :  2528-0902

diterbitkan oleh:

Informatika Institut Teknologi Nasional Bandung

Alamat : Gedung 2 Jl. PHH. Mustofa 23 Bandung 40124

Kontak : Tel. 7272215 (ext. 181)  Fax. 7202892

Email : mind.journal@itenas.ac.id

____________________________________________________________

Statistik Pengunjung :

Flag Counter

  Web
Analytics Statistik Pengunjung

 Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License