Perbandingan Metode Content-based, Collaborative dan Hybrid Filtering pada Sistem Rekomendasi Lagu
Sari
Sistem rekomendasi dapat dimanfaatkan untuk membantu pengguna menemukan item atau informasi sesuai preferensi mereka, termasuk lagu. Metode seperti Collaborative Filtering (CF), Content-Based Filtering (CBF), dan Hybrid Filtering digunakan untuk meningkatkan kualitas rekomendasi berdasarkan interaksi pengguna dan karakteristik konten. Penelitian ini membandingkan efektivitas ketiga metode tersebut dalam rekomendasi lagu menggunakan dataset dengan 68.330 entri data. Metode CF dan CBF diterapkan secara terpisah, lalu dikombinasikan dalam pendekatan hybrid untuk mengevaluasi peningkatan hasil. CF mencapai presisi 49.9%, CBF 39.5%, sedangkan hybrid CF-CBF mencatat presisi tertinggi sebesar 50.7%. Sebaliknya, hybrid CBF-CF menghasilkan presisi terendah, yaitu 38.4%. Kesimpulannya, pendekatan hybrid CF-CBF lebih unggul dalam merekomendasikan lagu sesuai preferensi pengguna dibandingkan metode lainnya.
Kata kunci: sistem rekomendasi, rekomendasi lagu, content-based filtering, collaborative filtering, hybrid filtering
AbstractRecommender systems can be utilized to assist users in discovering items or information that align with their preferences, including music. Methods such as Collaborative Filtering (CF), Content-Based Filtering (CBF), and Hybrid Filtering enhance recommendation quality based on user interactions and content characteristics. This study compares the effectiveness of these three methods in music recommendation using a dataset containing 68,330 entries. CF and CBF were implemented separately and combined in a hybrid approach to evaluate performance improvements. CF achieved a precision of 49.9% and CBF 39.5%, while the hybrid CF-CBF approach recorded the highest precision at 50.7%. In contrast, the hybrid CBF-CF approach yielded the lowest precision, at 38.4%. In conclusion, the hybrid CF-CBF approach outperforms other methods in delivering music recommendations tailored to user preferences.
Keywords: recommendation system, song recommendation, content-based filtering, collaborative filtering, hybrid filtering
Teks Lengkap:
PDFReferensi
Pesaru, S., Sucharitha, K., Lahari, R., & Prakash, P. (2022). Music Recommedation System Using CNN Algorithm. Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), Kannur, India, 2022, (pp. 1827-1829), doi: 10.1109/ICICICT54557.2022.9917811.
Bodduluri, K. C., Palma F., Kurti, A., Jusufi, I., & Lowenadler H. (2024). Exploring the Landscape of Hybrid Recommendation Systems in E-Commerce: A Systematic Literature Review. IEEE Access, 12, 28273-28296, doi: 10.1109/ACCESS.2024.3365828.
Muhammad, M. (2022). Item Based Collaborative Filtering Based on Highest Item Similarity. International Journal of Artificial Intelligence Research, 6(1). https://doi.org/10.29099/ijair.v6i1.310.
Hwang, S., & and Park, E. (2022). Movie Recommendation Systems Using Actor-Based Matrix Computations in South Korea. IEEE Transactions on Computational Social Systems, 9(5), 1387-1393, doi: 10.1109/TCSS.2021.3117885.
Feng, S., Meng, J., & Zhang, J. (2021). News Recommendation Systems in the Era of Information Overload. Journal of Web Engineering, 20(2), 459-470, doi: 10.13052/jwe1540-9589.20210.
Jin, J., et al. (2022). An Agent-Based Traffic Recommendation System: Revisiting and Revising Urban Traffic Management Strategies. IEEE Transactions on System, 52(11), 7289-7301, Nov. 2022, doi: 10.1109/TSMC.2022.3177027.
Wang, G., Zhang, X., Wang, H., Chu, Y., & Shao, Z. (2022). Group-Oriented Paper Recommendation With Probabilistic Matrix Factorization and Evidential Reasoning in Scientific Social Network. IEEE Transactions on Systems, 52(6), 3757-3771, June 2022, doi: 10.1109/TSMC.2021.3072426.
Lin, Y. (2024). Minimizing Cold Start Time on Serverless Platforms Based on Time Series Prediction Methods. IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT), (pp. 996-1001), doi: 10.1109/ICCECT60629.2024.10545789.
Zhang, R., Tu, S., & Sun, Z. (2022). A hybrid music recommendation method based on music genes and collaborative filtering. IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress, (pp. 1-6), doi: 10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927924.
Jaison C, R. R., & Rajeswari, M. (2023). Song Recommendation based on Voice Tone Analysis. Second International Conference on Electronics and Renewable Systems (ICEARS), (pp. 708-712), doi: 10.1109/ICEARS56392.2023.10085001.
Krstinic, D., Seric, L. & Slapnicar, I. (2023). Comments on MLCM: Multi-Label Confusion Matrix. IEEE Access, 11, 40692-40697, 2023, doi: 10.1109/ACCESS.2023.3267672.
Kasica, S., Berret, C., & Munzner, T. (2021). Table Scraps: An Actionable Framework for Multi-Table Data Wrangling From An Artifact Study of Computational Journalism. IEEE Transactions on Visualization and Computer Graphics, 27(2), 957-966, doi: 10.1109/TVCG.2020.3030462.
Wang, Y., Pan, Z., & Pan, Y. (2020). A Training Data Set Cleaning Method by Classification Ability Ranking for the $k$ -Nearest Neighbor Classifier. IEEE Transactions on Neural Networks and Learning Systems, 31(5), 1544-1556, doi: 10.1109/TNNLS.2019.2920864.
Wang, X., & Wang, C. (2020). Time Series Data Cleaning: A Survey. IEEE Access, 8, 1866-1881, 2020, doi: 10.1109/ACCESS.2019.2962152.
H. Xu and Y. Deng. (2018).Dependent Evidence Combination Based on Shearman Coefficient and Pearson Coefficient, IEEE Access, 6, 11634-11640, doi: 10.1109/ACCESS.2017.2783320.
Lopez-Ramirez, G. A., Aragon-Zavala, A., & and Vargas-Rosales, C. (2024). Exploratory Data Analysis for Path Loss Measurements: Unveiling Patterns and Insights Before Machine Learning. IEEE Access, 12, 62279-62295, 2024, doi: 10.1109/ACCESS.2024.3394904.
DOI: https://doi.org/10.26760/mindjournal.v9i2.179-193
Refbacks
- Saat ini tidak ada refbacks.
____________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2528-0902
diterbitkan oleh:
Informatika Institut Teknologi Nasional Bandung
Alamat : Gedung 2 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 181)Â Fax. 7202892
Email : mind.journal@itenas.ac.id
____________________________________________________________
Statistik Pengunjung :
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.