APLIKASI ANODA MAGNESIUM PADA PROSES ELEKTRODIALISIS UNTUK RECOVERY NUTRIEN LIMBAH URINE

Mas Den Rum, Anita Dwi Anggrainy, Arseto Yekti Bagastyo

Sari


Elektrodialisis untuk proses recovery nutrien dari urine sangat diminati pada satu dekade terakhir, karena dapat mengkonsentrasikan ion yang menjadi target untuk mendapatkan produk hasil recovery dengan tingkat kemurnian tinggi. Penggunaan magnesium sebagai anoda untuk proses elektrodialisis saat ini juga mengemuka. Anoda ini secara efektif dapat menghasilkan struvite tanpa memerlukan tambahan bahan kimia untuk penyesuaian pH larutan dalam reaksi presipitasi. Pada studi ini, efektifitas anoda magnesium untuk proses recovery nutrien dengan elektrodialisis diinvestigasi berdasarkan tiga variasi pH (8,5; 8,8; 9,0) dan dua variasi kuat arus (300 dan 450 mA). Tujuannya untuk mengevaluasi efisiensi recovery amonium dan fosfat, serta mengidentifikasi karakteristik presipitat. Selama eksperimen, penyesuaian pH larutan tetap dilakukan sesuai variasi pH awal (pH 8,5-9). Hasil menunjukkan bahwa recovery tertinggi amonium dan fosfat didapat pada pH 8.5. Sekitar 42% amonium dan 28% fosfat dapat diambil sebagai produk recovery masing-masing pada kuat arus 300 dan 450 mA. Lebih dari 90% brucite, 3% hydroxyapatite, dan 3% struvite dapat diidentifikasi sebagai produk presipitat.


Kata Kunci


anoda magnesium, elektrodialisis, struvite, urine

Teks Lengkap:

PDF

Referensi


American Public Health Association (2005). Standard Methods for The Examination of Water and Wastewater (21st ed.). Washington D.C.: American Public Health Association, American Water Works Associations, Water Environment Federation.

Atrens, A., Song, G., Liu, M., Shi, Z., Cao, F.,&M.S. Dargusch, M.S. (2015). Review of Recent Developments in the Field of Magnesium Corrosion, Advanced Engineering Materials. 17(4), 400–453.

Bagastyo, A. B., Anggrainy, A. D., Khoiruddin, K., Ursada R., Warmadewanthi I. D. A. A., &Wenten, I. G. (2022). Electrochemically-Driven Struvite Recovery: Prospect and Challenges for the Application of Magnesium Sacrificial Anode. Separation and Purification Technology. 288, 120653.

Bagastyo, A. B., Sari, P. P. I., Direstiyani, L. C. (2021). Effect of Chloride Ions on the Simultaneous Electrodialysis and Electrochemical Oxidation of Mature Landfill Leachate. Environmental Science and Pollution Research. 28, 63646-63660.

Battistoni, P., De Angelis, A., Pavan, P., Prisciandaro, M.,& Cecchi, F. (2001). Phosphorus Removal from A Real Anaerobic Supernatant by Struvite Crystallization. Water Research. 35(9). 2167-2178.

Bridger, G.L., Salutsky, M.L., & Starostka, R.W.(1962). Micronutrient Sources, Metal Ammonium Phosphates as Fertilizers. Journal of Agricultural and Food Chemistry. 10, 181–188.

Cai, Y., Han, Z., Lin, X., Du, J., Lei, Z., Ye, Z., Zhu, J. (2022). Mechanisms of Releasing Magnesium Ions from A Magnesium Anode in An Electrolysis Reactor with Struvite Precipitation. Journal of Environmental and Chemical Engineering. 10(1), 106661.

Cai, Y., Han, Z., Lin, X., Duan, Y., Du, J., Ye, Z., &Zhu, J. (2020). Study on Removal of Phosphorus as Struvite from Synthetic Wastewater using A Pilot-Scale Electrodialysis System with Magnesium Anode. Science of the Total Environment. 726, 138221.

De Paepe, J., Lindeboom, R. E. F., Vanoppen, M., De Paepe, K., Demey, D., Coessens, W., Lamaze, B., Verliefde, A. R. D., Clauwaert, P., Vlaeminck, S. E. (2018). Refinery and Concentration of Nutrients from Urine with Electrodialysis Enabled by Upstream Precipitation and Nitrification. Water Research. 144(1), 76-68.

Hug, A., & Udert, K. M. (2013). Struvite Precipitation from Urine with Electrochemical Magnesium Dosage.Water Research. 47(1), 289–299.

Jönsson, H. &VinnerÃ¥s, B. (2004). Adapting the Nutrient Content of Urine and Faeces in Different Countries using FAO and Swedish Data. Proceeding 2nd International Symposium “Ecosan - Closing Loopâ€, Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ), Eschborn, Germany.

Kékedy-Nagy, L.,Teymouri, A., Herring, A. M., Greenlee, L. F. (2020). Electrochemical Removal and Recovery of Phosphorus as Struvite in An Acidic Environment using Pure Magnesium vs. the AZ31 Magnesium Alloy as the Anode. Chemical Engineering Journal. 380, 122480.

Kim, D., Min, K. J., Lee., K., Yu, M. S., & Park, K. Y. (2017). Effects of pH, Molar Ratios and Pre-treatment on Phosphorus ecovery Through Struvite Crystalliation from Effluent of Anaerobically Digested Swine Wastewater. Environmental Engineering Research. 22(1), 12-18.

Kirkes, L. & Xiong, Y. (2018). Experimental Determination of Brucite Solubility in NaCl Solutions at Elevated Temperatures. Dalam: Y. Xiong (Penyunt.), Solution Chemistry. New York: Nova Science Publisher, Inc.

Liao, M., Liu, Y., Tian, E., Ma, W., Liu, H. (2020). Phosphorous Removal and High-Purity Struvite Recovery from Hydrolyzed Urine with Spontaneous Electricity Production in Mg-Air Fuel Cell. Chemical Engineering Journal. 391, 123517.

Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A review. Critical Reviews in Environmental Science and Technology. 39, 433-477.

Le Corre, K.S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2005). Impact of Calcium on Struvite Crystal Size, Shape and Purity. Journal of Crystal Growth, 283 (3-4), 514-522.

Lin, X., Han, Z., Yu, H., Ye, Z., Zhu, S., & Zhu, J. (2018). Struvite Precipitation from Biogas Digestion Slurry using A Two-Chamber Electrolysis Cell with A Magnesium Anode. Journal of Cleaner Production. 174, 1598–1607.

Mihelcic, J. R., Fry, L. M., & Shaw, R. (2011). Global Potential of Phosphorus Recovery from Human Urine and Feces. Chemosphere. 84, 832–839.

Rubio-Rincon, F. J., Lopez-Vazquez, C. M., Ronteltap, M., & Bradjanovic, D. (2014). Seawater of Phosphorus Recovery from Urine. Desalination. 348, 49-56.

Song, G. & Atrens, A. (2003). Understanding magnesium corrosion. A Framework for Improved Alloy Performance. Advanced Enginering Materials. 5(12), 837–858

Strathmann, H. (1986). Electrodialysis. Dalam: P.M. Bungay, H.K. Lonsdale, M.N. DePinho (Penyunt.), Synthetic Membranes: Science, Engineering and Applications. Dordrecht: Springer.

Tan, X., Yu, R., Yang, G., Wei, F., Long, L., Shen, F., Wu, J., & Zhang, Y. (2021). Phosphate Recovery and Simultaneous Nitrogen Removal from Urine by Electrochemically Induced Struvite Precipitation. Environmental Science and Pollution Research. 28(5), 5625–5636.

Tansel, B., Lunn, G., & Monje, O. (2018). Struvite Formation and Decomposition Characteristics for Ammonia and Phosphorus Recovery: A review of Magnesium-Ammonia-Phosphate Interactions.Chemosphere. 194, 504–514.

Wang, Z., Ul Hassan, M., Nadeem, F., Wu, L., Zhang, F., & Li, X. (2020). Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Frontiers in Plant Science. 10, 1727.




DOI: https://doi.org/10.26760/rekalingkungan.v11i1.12-23

Refbacks

  • Saat ini tidak ada refbacks.




Terindeks:

 

Statistik Pengunjung