Quality Improvement on RoF 5G Fronthaul System Design at Millimeter-wave with EDFA and FBG Techniques

CATUR APRIONO, SALSABILA SHITA PUTRI NUGROHO, YUS NATALI

Abstract


ABSTRAK

Jaringan seluler terkini membutuhkan kapasitas tinggi dan latensi rendah di fronthaul yang dapat didukung oleh radio over fiber (RoF) dengan gelombang milimeter. Namun, dispersi merupakan salah satu masalah dalam menjaga kualitas transmisi. Penelitian ini mempelajari komponen EDFA dan FBG untuk meningkatkan kinerja transmisi pada sistem RoF gelombang milimeter menggunakan Optisystem for 5G fronthaul dengan mempertimbangkan faktor Q dan Bit Error Rate (BER). EDFA meningkatkan kinerja dengan kecepatan bit puncak 16 Gbps untuk 1 km, yang memenuhi standar fronthaul D-RAN. Peningkatan peningkatan menggunakan FBG untuk bit rate 16 Gbps memberikan kinerja yang lebih baik mulai dari jarak 4 km hingga 97,99 persen dibandingkan dengan konfigurasi tanpa FBG. Hal ini menunjukkan bahwa dispersi mempengaruhi kinerja sistem lebih dari redaman dilihat dari rata-rata perbedaan BER sebesar 6.6280e-04 ketika FBG ditambahkan dengan EDFA. Penelitian ini menunjukkan dua teknik telah meningkatkan kinerja sistem.

Kata kunci: fiber, RoF, millimeter, fronthaul

 

ABSTRACT

Advanced cellular networks need high capacity and low latency in fronthaul that can be supported by radio over fiber (RoF) with millimeter waves. However, dispersion is one problem in maintaining transmission quality. This research studies EDFA and FBG components to increase transmission performance in a millimeter wave-RoF system using Optisystem for 5G fronthaul by considering the Q factor and the Bit Error Rate (BER). EDFA improves performance with a 16 Gbps peak bit rate for 1 km, which meets D-RAN fronthaul standards. Improvement increase using FBG for a bit rate of 16 Gbps provided better performances starting from a distance of 4 km, up to 97.99 percent, compared to configurations without FBG. It shows that the dispersion influences the system performance more than the attenuation seen from the BER discrepancy average of 6.6280e-04 when the FBG is added with EDFA. This research indicates two techniques have improved the system's performance.

Keywords: fiber, RoF, millimeter, fronthaul


Keywords


fiber; RoF; millimeter; fronthaul

Full Text:

PDF

References


Acatauassu, D., Licá, M., Ohashi, A., Fernandes, A. L. P., Freitas, M., Costa, J. C. W. A., Medeiros, E., Almeida, I., & Cavalcante, A. M. (2021). An Efficient Fronthaul Scheme Based on Coaxial Cables for 5G Centralized Radio Access Networks. IEEE Transactions on Communications, 69(2), 1343–1357. https://doi.org/10.1109/TCOMM.2020.3039860

Al-Falahy, N., & Alani, O. Y. (2017). Technologies for 5G networks: Challenges and opportunities. It Professional, 19(1), 12–20.

Anand, A., de Veciana, G., & Shakkottai, S. (2020). Joint Scheduling of URLLC and eMBB Traffic in 5G Wireless Networks. IEEE/ACM Transactions on Networking, 28(2), 477–490. https://doi.org/10.1109/TNET.2020.2968373

Chomycz, B. (2009). Planning fiber optics networks. McGraw-Hill Education.

del Peral-Rosado, J. A., Raulefs, R., López-Salcedo, J. A., & Seco-Granados, G. (2017). Survey of cellular mobile radio localization methods: From 1G to 5G. IEEE Communications Surveys & Tutorials, 20(2), 1124–1148.

Eluwole, O. T., Udoh, N., Ojo, M., Okoro, C., & Akinyoade, A. J. (2018). From 1G to 5G, what next? IAENG International Journal of Computer Science, 45(3).

Erunkulu, O. O., Zungeru, A. M., Lebekwe, C. K., Mosalaosi, M., & Chuma, J. M. (2021). 5G Mobile Communication Applications: A Survey and Comparison of Use Cases. IEEE Access, 9, 97251–97295. https://doi.org/10.1109/ACCESS.2021.3093213

Gangwar, A., & Sharma, B. (2012). Optical fiber: the new era of high speed communication (technology, advantages and future aspects). International Journal of Engineering Research and Development, 4(2), 19–23.

Hui, R., & O’Sullivan, M. (2022). Fiber-Optic Measurement Techniques. Academic Press.

Kani, J., Terada, J., Suzuki, K.-I., & Otaka, A. (2017). Solutions for Future Mobile Fronthaul and Access-Network Convergence. Journal of Lightwave Technology, 35(3), 527–534. https://doi.org/10.1109/JLT.2016.2608389

Lashgari, M., Tonini, F., Capacchione, M., Wosinska, L., Rigamonti, G., & Monti, P. (2022). Fiber-vs. Microwave-based 5G Transport: a Total Cost of Ownership Analysis. European Conference and Exhibition on Optical Communication, We1B-5.

Li, J. L., Zhao, F., & Yu, J. (2020). D-band millimeter wave generation and transmission though radio-over-fiber system. IEEE Photonics Journal, 12(2), 1–8.

Malakzadeh, A., Pashaie, R., & Mansoursamaei, M. (2020). Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs. Optical and Quantum Electronics, 52, 1–16.

Nugroho, S. S. P., Natali, Y., & Apriono, C. (2022). Design of Millimeter-Wave based Radio over Fiber for 5G Applications. 2022 1st International Conference on Information System and Information Technology, ICISIT 2022. https://doi.org/10.1109/ICISIT54091.2022.9872765

Pandey, G., Choudhary, A., & Dixit, A. (2021). Wavelength Division Multiplexed Radio Over Fiber Links for 5G Fronthaul Networks. IEEE Journal on Selected Areas in Communications, 39(9), 2789–2803. https://doi.org/10.1109/JSAC.2021.3064654

Pokhrel, S. R., Ding, J., Park, J., Park, O.-S., & Choi, J. (2020a). Towards enabling critical mMTC: A review of URLLC within mMTC. IEEE Access, 8, 131796–131813.

Pokhrel, S. R., Ding, J., Park, J., Park, O.-S., & Choi, J. (2020b). Towards Enabling Critical mMTC: A Review of URLLC Within mMTC. IEEE Access, 8, 131796–131813. https://doi.org/10.1109/ACCESS.2020.3010271

Raddo, T. R., Rommel, S., Cimoli, B., & Monroy, I. T. (2019). The Optical Fiber and mmWave Wireless Convergence for 5G Fronthaul Networks. 2019 IEEE 2nd 5G World Forum (5GWF), 607–612. https://doi.org/10.1109/5GWF.2019.8911613

Rommel, S., Dodane, D., Grivas, E., Cimoli, B., Bourderionnet, J., Feugnet, G., Morales, A., Pikasis, E., Roeloffzen, C., van Dijk, P., Katsikis, M., Ntontin, K., Kritharidis, D., Spaleniak, I., Mitchell, P., Dubov, M., Carvalho, J. B., & Tafur Monroy, I. (2020). Towards a Scaleable 5G Fronthaul: Analog Radio-over-Fiber and Space Division Multiplexing. Journal of Lightwave Technology, 38(19), 5412–5422. https://doi.org/10.1109/JLT.2020.3004416

Rommel, S., Perez-Galacho, D., Fabrega, J. M., Muñoz, R., Sales, S., & Tafur Monroy, I. (2019). High-Capacity 5G Fronthaul Networks Based on Optical Space Division Multiplexing. IEEE Transactions on Broadcasting, 65(2), 434–443. https://doi.org/10.1109/TBC.2019.2901412

Valcarenghi, L., Kondepu, K., Giannone, F., & Castoldi, P. (2016). Requirements for 5G fronthaul. 2016 18th International Conference on Transparent Optical Networks (ICTON), 1–5. https://doi.org/10.1109/ICTON.2016.7550569

Weichbroth, P. (2020). Usability of mobile applications: a systematic literature study. Ieee Access, 8, 55563–55577.




DOI: https://doi.org/10.26760/elkomika.v11i3.759

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License