Penggunaan GPS pada Smartphone untuk Menghasilkan Data Profil Kecepatan dalam Waktu-Nyata

RADHITYA WIRATAMA, ABDUL HALIM

Sari


ABSTRAK

Angkutan berbasis rel menjadi angkutan umum yang dinilai efektif dan efisien karena dapat mempersingkat waktu tempuh. Di kawasan perkotaan Jabodetabek (Jakarta, Bogor, Depok, Tangerang, Bekasi), angkutan berbasis rel hampir semuanya menggunakan Kereta rel Listrik (KRL) sebagai angkutan komuter. Pada kasus ini diambil rute Manggarai – Jatinegara dengan jarak tempuh 2652 meter, dengan stasiun antara yaitu stasiun Matraman yang berjarak 1387.49 meter dari stasiun Manggarai, dan berjarak 1309.75 dari stasiun Jatinegara. Dengan jarak tempuh tersebut, waktu tempuh KRL dari Manggarai ke Matraman sebesar 185 detik, dan dari Matraman ke Jatinegara sebesar 168 detik. Selama jarak tempuh dan waktu tempuh tersebut, pergerakan KRL akan mengalami tiga kondisi, yaitu percepatan (acceleration), coasting, dan perlambatan (deceleration) atau pengereman (braking). Data kecepatan, jarak tempuh, dan waktu tempuh kereta diperoleh dengan sensor GPS pada Smartphone melalui aplikasi Phyphox.

Kata kunci: Phyphox, python, profil kecepatan, driving cycle

 

ABSTRACT

Rail-based transportation is public transportation that is considered effective and efficient because it can shorten travel time. In the Greater Jakarta areas (Jakarta, Bogor, Depok, Tangerang, Bekasi), almost all rail-based transportation uses Commuter Electric Railway or Kereta Rel Listrik (KRL) as a commuter transportation. In this case, the Manggarai – Jatinegara route is taken with a distance of 2652 meters, with the intermediate station, Matraman station, which is 1387.49 meters from Manggarai station, and a distance of 1387.49 meters from Manggarai station.1309.75 from Jatinegara station. With this distance, the KRL travel time from Manggarai to Matraman is 185 seconds, and from Matraman to Jatinegara is 168 seconds. During the mileage and travel time, the movement of the KRL will experience three conditions, there are: acceleration, coasting, and deceleration or braking. Train speed, time, and distance data will be recorded by GPS sensor on smartphone through Phyphox app.

Keywords: Phyhpox, Python, speed profile, driving cycle


Kata Kunci


Phyphox; python; profil kecepatan; driving cycle

Teks Lengkap:

PDF

Referensi


Frey, S. (2012). Railway Electrification System and Engineering. Delhi: White Word Publications.

García Ramírez, Y., & Rojas, H. (2020). Position and speed accuracy on smartphones: an Ecuadorian case study. Espacios, 41, 24.

Hachimi, C. E., Belaqziz, S., Khabba, S., & Chehbouni, A. (2022). Data Science Toolkit: An all-inone python library to help researchers and practitioners in implementing data sciencerelated algorithms with less effort. Software Impacts, 12, 100240.

Haroen, Y., Rachmildha, T. D., Ikhsan, M., & Fikriadi, M. I. (2013). Power Evaluation of Jakarta DC Railway Substation to Meet 1.2 Million Passengers Per Day. Procedia Technology, 11, 1252–1258.

Huang, K., Wu, J., Yang, X., Gao, Z., Liu, F., & Zhu, Y. (2019). Discrete Train Speed Profile Optimization for Urban Rail Transit: A Data-Driven Model and Integrated Algorithms Based on Machine Learning. Journal of Advanced Transportation, 2019, 7258986.

KAI Commuter. (2022). Sekilas PT Kereta Commuter Indonesia. https://www.krl.co.id/

N. Ari and M. Ustazhanov, "Matplotlib in python," 2014 11th International Conference on Electronics, Computer and Computation (ICECCO), 2014, pp. 1-6

Navarro, L. M., Fernandez-Cardador, A., & Cucala, A. P. (2021). Design of indicators to guide capacity improvements in urban railway lines. Journal of Urban Mobility, 1, 100003.

Purnama, B. (2021). Implementasi Artificial Intelligence dan Machine Learning . Bandung: Penerbit INFORMATIKA.

Staacks, S., Hütz, S., Heinke, H., & Stampfer, C. (2018). Advanced tools for smartphone-based experiments: phyphox. Physics Education, 53

Tjahjono, T., Kusuma, A., & Septiawan, A. (2020). The Greater Jakarta Area Commuters Travelling Pattern. Transportation Research Procedia, 47, 585–592.

Wang, J., & Rakha, H. A. (2017). Electric train energy consumption modeling. Applied Energy, 193, 346–355.

Wahyono, T. (2018). Fundamental of Python For Machine Learning. Penerbit Gava Media.

Wawage, P., & Deshpande, Y. (2022). Smartphone Sensor Dataset for Driver Behavior Analysis. Data in Brief, 41, 107992.

Wu, C., Zhang, W., Lu, S., Tan, Z., Xue, F., & Yang, J. (2019). Train Speed Trajectory Optimization With On-Board Energy Storage Device. IEEE Transactions on Intelligent Transportation Systems, 20(11), 4092–4102.

Yuda Bakti, I. G. M., Rakhmawati, T., Sumaedi, S., & Damayanti, S. (2020). Railway commuter line passengers’ perceived service quality: hedonic and utilitarian framework. Transportation Research Procedia, 48, 207–217.




DOI: https://doi.org/10.26760/elkomika.v11i2.300

Refbacks

  • Saat ini tidak ada refbacks.


_______________________________________________________________________________________________________________________

ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2459-9638

diterbitkan oleh :

Teknik Elektro Institut Teknologi Nasional Bandung

Alamat : Gedung 20 Jl. PHH. Mustofa 23 Bandung 40124

Kontak : Tel. 7272215 (ext. 206) Fax. 7202892

Surat Elektronik : jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________

Statistik Pengunjung

Free counters!

Web

Analytics Made Easy - StatCounter

Lihat Statistik Jurnal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License