Pemodelan Active Front End Converter (AFE) Tiga-Fasa Tiga-Kaki menggunakan Kendali Model Predictive Control (MPC)
Sari
ABSTRAK
Penelitian ini membahas Active Front End Converter (AFE) tiga-fasa tiga-kaki menggunakan kendali Model Predictive Control (MPC) pada pensakelaran converter yang dapat mengurangi nilai harmonisa dan memperbaiki faktor daya pada jaringan. Kendali MPC digunakan untuk melakukan prediksi tegangan dan arus AFE dengan cara memasukkan vektor tegangan yang dihasilkan oleh sakelar konverter ke dalam model state-space diskrit dan dievaluasi menggunakan cost function. Simulasi model dilakukan pada beberapa kondisi, yaitu simulasi beban resistif, beban induktif, beban kapasitif, beban nonlinear, dan variable frequency drive (VFD) dengan motor induksi. Simulasi beban resistif, THDv dan THDi secara berurutan nilai rata-ratanya sebesar 0.02% dan 0.45%, beban induktif, 0.01% dan 1.92%, beban kapasitif, 0.01% dan 1.92%, beban nonlinear, 0.03% dan 1.23%, dan beban VFD dengan motor induksi sebesar 0.04% dan 1.18%. Faktor daya pada simulasi beban bervariasi menghasilkan unity. Dari hasil simulasi didapatkan kesimpulan kendali MPC pada AFE mampu meningkatkan kualitas daya listrik.
Kata kunci: Harmonisa, Faktor Daya, AFE, MPC, Model Vektor Ruang
Â
ABSTRACT
This study discusses a three-phase three-leg Active Front End Converter (AFE) using Model Predictive Control (MPC) which controls converter switching to reduce harmonic values and improve the power factor on the network. MPC is used to predict the AFE voltage and current by entering the voltage vector generated by the converter switch into a discrete state-space model and evaluated using a cost function. The simulations of the model have been done under several conditions, resistive loads, inductive loads, capacitive loads, nonlinear loads, and variable frequency drive (VFD) with an induction motor. Resistive load simulations, THDv and THDi respectively, the average values are 0.02% and 0.45%, inductive load, 0.01% and 1.92%, capacitive load, 0.01% and 1.92%, nonlinear load, 0.03% and 1.23%, and load VFD with induction motor is 0.04% and 1.18%. The power factor in the varying load simulation results is unity. From the simulation results, it can be concluded that MPC control on AFE can improve electrical power quality.
Keywords: Harmonics, Power Factor, AFE, MPC, Space Vector Model
Kata Kunci
Teks Lengkap:
PDFReferensi
Andang, A., Hartati, R. S., Manuaba, I. B. G., & Kumara, I. N. S. (2022). Grid-Connected Inverter using Model Predictive Control to Reduce Harmonics in Three-Phase Four-Wires Distribution System. Engineering Letters, 30(1), 108–116.
Antoniewicz, K., & Rafal, K. (2017). Model predictive current control method for four-leg threelevel converter operating as shunt active power filter and grid connected inverter. Bulletin of the Polish Academy of Sciences Technical Sciences, 65(5), 601–607. https://doi.org/10.1515/bpasts-2017-0065
Blaabjerg, F. (2018). Control of power electronic converters and systems. In Control of Power Electronic Converters and Systems. https://doi.org/10.1016/C2015-0-02427-3
Chimonyo, K. B., Sathish Kumar, K., Kishore Kumar, B., & Ravi, K. (2018). Design and Analysis of Electrical Drives Using Active Front End Converter. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Icicct, (pp.115–119). https://doi.org/10.1109/ICICCT.2018.8473042
Cortés, P., RodrÃguez, J., Antoniewicz, P., & Kazmierkowski, M. (2008). Direct power control of an AFE using predictive control. IEEE Transactions on Power Electronics, 23(5), 2516–2523. https://doi.org/10.1109/TPEL.2008.2002065
Davari, P., Zare, F., & Abdelhakim, A. (2018). Active rectifiers and their control. In Control of Power Electronic Converters and Systems: Volume 2 (pp. 3–52). Elsevier. https://doi.org/10.1016/B978-0-12-816136-4.00013-0
Dehghanzadeh, A., Farahani, G., Vahedi, H., & Al-Haddad, K. (2018). Model predictive control design for DC-DC converters applied to a photovoltaic system. International Journal of Electrical Power & Energy Systems, 103, 537–544. https://doi.org/10.1016/j.ijepes.2018.05.004
Islam, M. M. (2019). Overview – VFD Motor Controller. In VFD Challenges for Shipboard Electrical Power System Design (pp. 1–19). Wiley. https://doi.org/10.1002/9781119463474.ch1
Karamanakos, P., Geyer, T., Oikonomou, N., Kieferndorf, F., & Manias, S. (2013). Model predictive control in power electronics: Strategies to reduce the computational complexity. IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, Mv, (pp.5818–5823). https://doi.org/10.1109/IECON.2013.6700088
Lee, J. H. (2011). Model predictive control: Review of the three decades of development. International Journal of Control, Automation and Systems, 9(3), 415–424. https://doi.org/10.1007/s12555-011-0300-6
Mohamed, I. S., Rovetta, S., Do, T. D., Dragicevic, T., & Diab, A. A. Z. (2019). A Neural-Network-Based Model Predictive Control of Three-Phase Inverter With an Output $LC$ Filter. IEEE Access, 7, 124737–124749. https://doi.org/10.1109/ACCESS.2019.2938220
Qiu, H., Zhao, X., Wei, Y., Tang, B., Yi, R., Cui, G., & Yang, C. (2020). Comparative analysis of super high-speed permanent magnet generator electromagnetic and temperature fields with the PWM and uncontrolled rectifiers. EPE Journal, 30(4), 181–191. https://doi.org/10.1080/09398368.2020.1776494
Rashid, Muhammad H. (2014). Power electronics : devices, circuits and applications.
Revuelta, P. S., Litrán, S. P., & Thomas, J. P. (2015). Active Power Line Conditioners: Design, Simulation and Implementation for Improving Power Quality. In Active Power Line Conditioners: Design, Simulation and Implementation for Improving Power Quality. https://doi.org/10.1016/C2014-0-02915-2
Singh, B., Gairola, S., Singh, B. N., Chandra, A., & Al-Haddad, K. (2008). Multipulse ac-dc converters for improving power quality: A review. In IEEE Transactions on Power Electronics (Vol. 23, Issue 1, pp. 260–281). https://doi.org/10.1109/TPEL.2007.911880
Song, Z., Tian, Y., Chen, W., Zou, Z., & Chen, Z. (2016). Predictive Duty Cycle Control of Three-Phase Active-Front-End Rectifiers. IEEE Transactions on Power Electronics, 31(1), 698–710. https://doi.org/10.1109/TPEL.2015.2398872
Vazquez, S., Rodriguez, J., Rivera, M., Franquelo, L. G., & Norambuena, M. (2017). Model Predictive Control for Power Converters and Drives: Advances and Trends. IEEE Transactions on Industrial Electronics, 64(2), 935–947. https://doi.org/10.1109/TIE.2016.2625238
Zhou, Z., Zhang, L., Liu, Z., Chen, Q., Long, R., & Su, H. (2020). Model Predictive Control for the Receiving-Side DC–DC Converter of Dynamic Wireless Power Transfer. IEEE Transactions on Power Electronics, 35(9), 8985–8997. https://doi.org/10.1109/TPEL.2020.2969996
DOI: https://doi.org/10.26760/elkomika.v11i1.241
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2459-9638
diterbitkan oleh :
Teknik Elektro Institut Teknologi Nasional Bandung
Alamat : Gedung 20 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 206) Fax. 7202892
Surat Elektronik : jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Statistik Pengunjung
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.