Object Detection and Pose Estimation with RGB-D Camera for Supporting Robotic Bin-Picking
Sari
ABSTRAK
Tujuan dari penelitian ini adalah untuk mendeteksi objek dan mengestimasi pose objek menggunakan kamera RGB-D. Dalam penelitian ini, kami mengusulkan pemrosesan data pada citra RGB dan citra depth saja, tanpa menggunakan point cloud, seperti pada umumnya. Metode yang diusulkan mendeteksi posisi dan orientasi objek menggunakan DRBox-v2 dari Region of Interest (ROI), yang sebelumnya diperoleh dari pendeteksian pada penanda ArUco. Hasil deteksi objek kemudian diskalakan dan digunakan pada citra depth untuk mendapatkan perkiraan posisi dan orientasi objek. Dari sisi pendeteksi objek, usulan metode memperoleh nilai Average Precision (AP) sebesar 0,740. Sedangkan untuk estimator pose, usulan metode menghasilkan kesalahan posisi rata-rata 13,36 mm dan kesalahan orientasi rata-rata 0,75 derajat. Metode yang diusulkan berpotensi menjadi alternatif sistem deteksi objek dan estimasi pose pada kamera RGB-D yang tidak memerlukan pemrosesan point cloud dan tidak memerlukan model referensi objek.
Kata kunci: deteksi objek, estimasi pose, DRBox, ArUco, bin-picking
Â
ABSTRACT
This study aims to detect objects and estimate the object's pose using an RGB-D camera. In this study, we proposed data processing on RGB images and depth images only, without using point clouds, as in general. The proposed method detected the object's position and orientation using the DRBox-v2 from the Region of Interest (ROI), which was previously obtained from detecting ArUco markers. The object detection results were then scaled and used in the depth image to get the object's approximate position and orientation. In object detection, the proposed method obtained an Average Precision (AP) value of 0.740. As for the pose estimator, our method generated an average position error of 13.36 mm and an average orientation error of 0.75 degrees. Therefore, this method can be an alternative object detection and pose estimation system on an RGB-D camera that does not require point cloud processing and an object reference model.
Keywords: object detection, pose estimation, DRBox, ArUco, bin-picking
Kata Kunci
Teks Lengkap:
PDF (English)Referensi
An, Q., Pan, Z., Liu, L., & You, H. (2019). DRBox-v2: An Improved Detector With Rotatable Boxes for Target Detection in SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 8333–8349.
Dewi, I. A., Kristiana, L., Darlis, A. R., & Dwiputra, R. F. (2019). Deep Learning RetinaNet based Car Detection for Smart Transportation Network. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika , 7(3), 570.
Du, G., Wang, K., Lian, S., & Zhao, K. (2021). Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: a review. Artificial Intelligence Review, 54(3), 1677–1734.
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 88(2), 303–338.
Hosang, J., Benenson, R., & Schiele, B. (2017). Learning Non-maximum Suppression. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017-Janua, 6469–6477.
Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., & Vitzilaios, N. (2021). Fiducial Markers for Pose Estimation. Journal of Intelligent & Robotic Systems, 101(4), 71.
Kozák, V., Sushkov, R., Kulich, M., & PÅ™euÄil, L. (2021). Data-Driven Object Pose Estimation in a Practical Bin-Picking Application. Sensors, 21(18), 6093.
La Delfa, G. C., Monteleone, S., Catania, V., De Paz, J. F., & Bajo, J. (2016). Performance analysis of visualmarkers for indoor navigation systems. Frontiers of Information Technology & Electronic Engineering, 17(8), 730–740.
Lee, S., & Lee, Y. (2020). Real-Time Industrial Bin-Picking with a Hybrid Deep Learning Engineering Approach. 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 584–588.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2020). Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 318–327.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788.
Sartika, E. M., Sarjono, R., & Chrisophras, H. X. (2019). Sistem Pick and Place Dua Derajat Kebebasan menggunakan Metoda Regresi. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 7(3), 521.
Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings.
Soltan, S., Oleinikov, A., Demirci, M. F., & Shintemirov, A. (2020). Deep Learning-Based Object Classification and Position Estimation Pipeline for Potential Use in Robotized Pick-and-Place Operations. Robotics, 9(3), 63.
Wahyuni, E. S., & Hendri, M. (2019). Smoke and Fire Detection Base on Convolutional Neural Network. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 7(3), 455.
Wong, C.-C., Tsai, C.-Y., Chen, R.-J., Chien, S.-Y., Yang, Y.-H., Wong, S.-W., & Yeh, C.-A. (2022). Generic Development of Bin Pick-and-Place System Based on Robot Operating System. IEEE Access, 10, 65257–65270.
Wubben, J., Fabra, F., Calafate, C. T., Krzeszowski, T., Marquez-Barja, J. M., Cano, J.-C., & Manzoni, P. (2019). Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition. Electronics, 8(12), 1532.
Xing, B., Zhu, Q., Pan, F., & Feng, X. (2018). Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles. Sensors, 18(6), 1706.
Xuan, H., Stylianou, A., Liu, X., & Pless, R. (2020). Hard Negative Examples are Hard, but Useful. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 12359 LNCS (pp. 126–142).
Yan, W., Xu, Z., Zhou, X., Su, Q., Li, S., & Wu, H. (2020). Fast Object Pose Estimation Using Adaptive Threshold for Bin-Picking. IEEE Access, 8, 63055–63064.
Yu, J., Jiang, W., Luo, Z., & Yang, L. (2021). Application of a Vision-Based Single Target on Robot Positioning System. Sensors, 21(5), 1829.
Zhuang, C., Wang, Z., Zhao, H., & Ding, H. (2021). Semantic part segmentation method based 3D object pose estimation with RGB-D images for bin-picking. Robotics and Computer Integrated Manufacturing, 68, 102086.
DOI: https://doi.org/10.26760/elkomika.v11i1.128
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.