Sistem Inspeksi Cacat pada Permukaan Kayu menggunakan Model Deteksi Obyek YOLOv5

FITYANUL AKHYAR, LEDYA NOVAMIZANTI, TITA RIANTIARNI

Sari


ABSTRAK

Permukaan kayu mengalami berbagai serangan serangga dan jamur, sehingga dapat menyebabkan cacat seperti pembusukan pada kayu yang berpengaruh terhadap kualitas dan harga jual kayu tersebut. Pengujian secara lapangan dengan penglihatan manusia menjadi kurang efektif, karena menghasilkan penilaian yang subjektif dan memerlukan waktu yang lama. Penelitian ini mengusulkan sistem deteksi cacat pada permukaan kayu pinus dan kayu karet menggunakan Convolutional Neural Network (CNN) dengan model YOLOv5. Pengujian sistem dilakukan menggunakan beberapa model dari YOLOv5, serta dua teknik image enhancement, yaitu edge filter dan Real ESRGAN. Hasil mAP terbaik sebesar 94,3% dengan kecepatan 125 FPS pada dataset kayu pinus menggunakan model YOLOv5s tanpa penambahan image enhancement. Sedangkan pada dataset kayu karet yang memiliki jenis cacat yang lebih kompleks, hasil mAP terbaik adalah sebesar 94,7% dengan kecepatan 139 FPS menggunakan model YOLOv5s-Transformer dengan penambahan image enhancement Real ESRGAN.

Kata kunci: deteksi, kayu, Convolutional Neural Network (CNN), YOLO

 

ABSTRACT

Wood surafce is subject to various insect and fungal attacks, which can cause defects such as wood rot. This condition affects the quality as well as the selling price of the wood. Field testing with human eyesight becomes less effective because it produces a subjective assessment and time consuming. This study proposes a defect detection system on the surface of pine wood and rubber wood using the Convolutional Neural Network (CNN) with the YOLOv5 model. System testing was carried out using several models from YOLOv5 and two image enhancement techniques, namely edge filter and Real ESRGAN. The best mAP results were 94.3%, with a speed of 125 FPS on the pine wood dataset using the YOLOv5s model without adding image enhancement. While on the rubber wood dataset with more complex defect problem, the best mAP results were 94.7% with a speed of 139 FPS using the YOLOv5s-Transformer model with the addition of image enhancement Real ESRGAN.

Keywords: detection, wood, Convolutional Neural Network (CNN), YOLO


Kata Kunci


deteksi; kayu; Convolutional Neural Network (CNN); YOLO

Teks Lengkap:

PDF

Referensi


Abdulfattah, M. E., Novamizanti, L., & Rizal, S. (2021). Super Resolution pada Citra Udara menggunakan Convolutional Neural Network. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(1), 71.

Bayu, I. G., Novamizanti, L., & Atmaja, R. D. (2015). Deteksi Ada Tidaknya Cacat Pada Kayu Menggunakan Metode Ekstraksi Ciri Statistik. eProceeding, 2(1), 1-8.

Cheng, Z., & Zhang, F. (2020). Flower end-to-end detection based on YOLOv4 using a mobile device. Wireless Communications and Mobile Computing.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., . . . Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. . Diambil kembali dari arXiv preprint arXiv:2010.11929.

Fang, Y., Guo, X., Chen, K., Zhou, Z., & Ye, Q. (2021). Accurate and Automated Detection of Surface Knots on Sawn Timbers Using YOLO-V5 Model. BioResources, 16(3).

Hu, J., Song, W., Zhang, W., Zhao, Y., & Yilmaz, A. (2019). Deep learning for use in lumber classification tasks. Wood Science and Technology, 53(2), 505-517.

Jocher, G., Stoken, A., Borovec, J., Chaurasia, A., & Changyu, L. (2020). ultralytics/yolov5. Diambil kembali dari Github Repository, YOLOv5.

Jung, S. Y., Tsai, Y. H., Chiu, W. Y., & Sun, C. T. (2018). Defect detection on randomly textured surfaces by convolutional neural networks. 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (hal. 1456-1461). Auckland: IEEE.

Kurnadi, K., Marsudi, M., & Maulana, Y. (2020). Analisis Pengendalian Produk Cacat Pada Kayu Lapis Menggunakan Sqc (Statistical Quality Control) Pada Pabrik Pt. Wijaya Tri Utama Plywood Industry. Journal of Industrial Engineering and Operation Management, 3(2).

Lathifah, H., Novamizanti, L., & Rizal, a. S. (2020). Fast and Accurate Fish Classification from Underwater Video using You Only Look Once. Conference Series: Materials Science and Engineering, 982(1), 012003. IOP Publishing.

Li, C., Zhang, Y., Tu, W., Jun, C., Liang, H., & Yu, H. (2017). Soft measurement of wood defects based on LDA feature fusion and compressed sensor images. Journal of Forestry Research, 28(6), 1285-1292.

Li, S., Li, D., & Yuan, W. (2019). Wood defect classification based on two-dimensional histogram constituted by LBP and local binary differential excitation pattern. IEEE Access, 7, 145829-145842.

Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, (pp. 2117-2125).

Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path aggregation network for instance segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, (pp. 8759-8768).

Liu, Y., Lu, B., Peng, J., & Zhang, Z. (2020). Research on the use of YOLOv5 object detection algorithm in mask wearing recognition. World Sci. Res. J, 6, 276–284.

Mutaqin, D. J., Nurhayani, F. O., & Rahayu, N. H. (2022). Performa Industri Hutan Kayu dan Strategi Pemulihan Pascapandemi Covid-19. Bappenas Working Papers, 5(1), 48-62.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). IEEE.

Ren, R., Hung, T., & Tan, K. C. (2017). A generic deep-learning-based approach for automated surface inspection. IEEE transactions on cybernetics, 48(3), 929-940.

Shapiro, L. G., & Stockman, G. C. (2001). Computer vision (Vol. 3). New Jersey: Prentice Hall. Diambil kembali dari Pythonic: pythonic.com

Shorten, C., & Khoshgoftaar, T. M. (2019). A Survey on Image Data Augmentation for Deep Learning. Journal of big data, 6(1), 1-48.

Suyanto. (2018). Machine Learning Tingkat Dasar dan Lanjut. Bandung: Informatika.

Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (hal. 10781-10790). IEEE.

Tu, Y., Ling, Z., Guo, S., & Wen, H. (2021). An accurate and real-time surface defects detection method for sawn lumber. IEEE Transactions on Instrumentation and Measurement, 70, 1-11.

Urbonas, A., Raudonis, V., MaskeliÅ«nas, R., & DamaÅ¡eviÄius, R. (2019). Automated identification of wood veneer surface defects using faster region-based convolutional neural network with data augmentation and transfer learning. . Applied Sciences, 9(22), 4898.

Wananda, P., Novamizanti, L., & Atmaja, a. R. (2018). Sistem Deteksi Cacat Kayu dengan Metode Deteksi Tepi SUSAN dan Ekstraksi Ciri Statistik. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 6(1), 140.

Wang, C.-Y., Liao, H.-Y. M., Yeh, I.-H., Wu, Y.-H., Chen, P.-Y., & Hsieh, J.-W. (2020). CSPNet: A New Backbone that can Enhance Learning Capability of CNN. CVF Conference on Computer Vision and Pattern Recognition. IEEE.

Yan, B., Fan, P., Lei, X., Liu, Z., & Yang, F. (2021). A real-time apple targets detection method for picking robot based on improved YOLOv5. Remote Sensing, 13(9), 1619.

Zhang, J., Tang, L., Mingotti, A., Peretto, L., & Wen, H. (2019). Analysis of white noise on power frequency estimation by DFT-based frequency shifting and filtering algorithm. IEEE Transactions on Instrumentation and Measurement, 69(7), 4125-4133.




DOI: https://doi.org/10.26760/elkomika.v10i4.990

Refbacks

  • Saat ini tidak ada refbacks.


_______________________________________________________________________________________________________________________

ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2459-9638

diterbitkan oleh :

Teknik Elektro Institut Teknologi Nasional Bandung

Alamat : Gedung 20 Jl. PHH. Mustofa 23 Bandung 40124

Kontak : Tel. 7272215 (ext. 206) Fax. 7202892

Surat Elektronik : jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________

Statistik Pengunjung

Free counters!

Web

Analytics Made Easy - StatCounter

Lihat Statistik Jurnal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License