Optimasi Convolutional Neural Network dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma

YUNENDAH NUR FUADAH, IBNU DAWAN UBAIDULLAH, NUR IBRAHIM, FAUZI FRAHMA TALININGSING, NIDAAN KHOFIYA SY, MUHAMMAD ADNAN PRAMUDITHO

Abstract


ABSTRAK

Pada penelitian ini dilakukan perancangan arsitektur Convolutional Neural Network (CNN) yang terdiri dari 5 layer konvolusi dan 1-fully connected layer untuk mengklasifikasikan citra fundus kedalam kondisi normal, early, moderate, deep, dan ocular hypertension (OHT). Selanjutnya, model yang diusulkan dibandingkan dengan arsitektur AlexNet yang memiliki 5 layer konvolusi dan 3- fully connected layer. Data yang digunakan berupa citra fundus yang terdiri dari 3200 data latih, 800 data validasi, dan 1000 data uji. Optimasi model CNN dilakukan dengan melakukan pengujian hyperparameter yang terdiri dari learning rate, batch-size, epoch, dan optimizer. Selain itu, pada tahap training diimplementasikan 5-fold cross validation untuk seleksi model terbaik. Dengan model yang lebih sederhana dari AlexNet, model CNN usulan dapat memberikan performansi yang sama dengan arsitektur AlexNet yaitu akurasi 100%, presisi, recall, f1-score dan AUC score bernilai 1.

Kata kunci: glaukoma, citra fundus, convolutional neural network (CNN), AlexNet

 

ABSTRACT

This study proposes a Convolutional Neural Network with 5 convolutional layer and 1-fully connected layer to classify fundus images into normal, early, moderate, deep, and ocular hypertension (OHT) conditions. Furthermore, the proposed model is compared with the AlexNet architecture which has 5 convolution layers and 3- fully connected layers. The data used is a fundus image consisting of 3200 training data, 800 validation data, and 1000 test data. The optimization of the CNN model is performed by testing the hyperparameters consisting of learning rate, batch size, epoch, and optimizer. In addition, at the training stage, 5-fold cross validation is implemented to select the best model to be used in the test stage. With a simpler model from AlexNet, the proposed model provides 100% accuracy performance with precision values, recall, f1-score, and AUC score of 1.

Keywords: glaucoma, fundus images, convolutional neural network (CNN), AlexNet


Keywords


glaukoma; citra fundus; convolutional neural network (CNN); AlexNet

References


Ajitha, S., Akkara, J. D., & Judy, M. V. (2021). Identification of glaucoma from fundus images using deep learning techniques. Indian Journal of Ophthalmology, 69(10), 2702–2709. https://doi.org/10.4103/ijo.IJO_92_21

An, G., Omodaka, K., Hashimoto, K., Tsuda, S., Shiga, Y., Takada, N., Kikawa, T., Yokota, H., Akiba, M., & Nakazawa, T. (2019). Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images. Journal of Healthcare Engineering, 2019, 4061313. https://doi.org/10.1155/2019/4061313

Fu’adah, Y. N., Sa’idah, S., Wijayanto, I., Ibrahim, N., Rizal, S., & Magdalena, R. (2021). Computer Aided Diagnosis for Early Detection of Glaucoma Using Convolutional Neural Network (CNN). In Triwiyanto, H. A. Nugroho, A. Rizal, & W. Caesarendra (Eds.), Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics (pp. 467–475). Springer Singapore.

Fu’adah, Y. N., Wijayanto, I., Pratiwi, N. K. C., Taliningsih, F. F., Rizal, S., & Pramudito, M. A. (2021). Automated Classification of Alzheimer’s Disease Based on {MRI} Image Processing using Convolutional Neural Network ({CNN}) with {AlexNet} Architecture. Journal of Physics: Conference Series, 1844(1), 12020. https://doi.org/10.1088/1742-6596/1844/1/012020

IBM Cloud Education. (2020). Convolutional Neural Networks. IBM Cloud.

Kokila, B., Devadharshini, M. S., Anitha, A., & Abisheak Sankar, S. (2021). Brain Tumor Detection and Classification Using Deep Learning Techniques based on MRI Images. Journal of Physics: Conference Series, 1916(1). https://doi.org/10.1088/1742-6596/1916/1/012226

Mahum, R., Rehman, S. U., Okon, O. D., Alabrah, A., Meraj, T., & Rauf, H. T. (2022). A Novel Hybrid Approach Based on Deep CNN to Detect Glaucoma Using Fundus Imaging. Electronics, 11(1). https://doi.org/10.3390/electronics11010026

Novakovic, J., Veljovi, A., Iiic, S., Papic, Z., & Tomovic, M. (2017). Evaluation of Classification Models in Machine Learning. Theory and Applications of Mathematics & Computer Science, 7(1), 39–46. https://uav.ro/applications/se/journal/index.php/TAMCS/article/view/158

Pratiwi, N. K. C., Fu’adah, Y. N., & Edwar, E. (2021). Early Detection of Deforestation through Satellite Land Geospatial Images based on CNN Architecture. Jurnal Infotel, 13(2), 54–62. https://doi.org/10.20895/infotel.v13i2.642

Project, R., & Kumar Shukla, M. (2020). Classification of Different Stages of Glaucoma Using Deep Learning Approaches.

Rizal, Syamsul., Ibrahim, Nur., Pratiwi, Nor., Saidah, Sofia., & Fu'adah. (2020). Deep Learning untuk Klasifikasi Diabetic Retinopathy menggunakan Model EfficientNet. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika. 8. 693. 10.26760/elkomika.v8i3.693.

Sreng, S., Maneerat, N., Hamamoto, K., & Win, K. Y. (2020). Deep Learning for Optic Disc Segmentation and Glaucoma Diagnosis on Retinal Images. Applied Sciences, 10(14). https://doi.org/10.3390/app10144916

Suta, I. B. L. M., Hartati, R. S., & Divayana, Y. (2019). Diagnosa Tumor Otak Berdasarkan Citra MRI (Magnetic Resonance Imaging). Majalah Ilmiah Teknologi Elektro, 18(2). https://doi.org/10.24843/mite.2019.v18i02.p01

Tham, Y.-C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C.-Y. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology, 121(11), 2081–2090. https://doi.org/10.1016/j.ophtha.2014.05.013

Wu, C.-W., Shen, H.-L., Lu, C.-J., Chen, S.-H., & Chen, H.-Y. (2021). Comparison of Different Machine Learning Classifiers for Glaucoma Diagnosis Based on Spectralis OCT. Diagnostics, 11(9). https://doi.org/10.3390/diagnostics11091718




DOI: https://doi.org/10.26760/elkomika.v10i3.728

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License