Sistem Pembangkit Laju-Aliran-Rendah Fluida Cair Presisi Tinggi menggunakan Kendali PID

HERI SUTANTO, MUHAMMAD SABILA HAQQI, ARIES SUBIANTORO, BENYAMIN KUSUMOPUTRO

Abstract


ABSTRAK

Peralatan infus medis seperti syringe pump dan infusion pump semakin banyak digunakan di rumah sakit dan fasilitas-fasilitas kesehatan. Kalibrasi peralatan tersebut sangat krusial dilakukan untuk mengidentifikasi penyimpangan pengukuran dan menghindari kerugian klinis hingga mortalitas. Peralatan tersebut umumnya dikalibrasi dengan metode perbandingan terhadap Infusion Device Analyzer (IDA). Untuk memastikan ketertelusuran kalibrasi tersebut, IDA perlu dikalibrasi, salah satunya dengan metode gravimetrik. Namun, kendala terbesar dalam kalibrasi IDA adalah membangkitkan laju aliran rendah dengan keberulangan yang baik dan kepresisian tinggi. Pada penelitian ini telah dibangun sebuah sistem pembangkit laju aliran rendah fluida cair presisi tinggi menggunakan kendali PID lingkar tertutup dengan kecepatan motor DC sebagai feedback. Hasil pengujian menunjukkan bahwa sistem dapat membangkitkan laju aliran pada rentang ukur 100 ml/jam kemudian turun ke 10 ml/jam. Ketidakpastian pengukuran yang diperoleh antara 0,06% pembacaan sampai 0,24% pembacaan, pada tingkat kepercayaan 95% dengan faktor cakupan k=2. Sistem yang dikembangkan layak digunakan dalam kalibrasi IDA.

Kata Kunci: kalibrasi, peralatan infus medis, laju aliran rendah, kendali PID, ketidakpastian pengukuran

 

ABSTRACT

Medical infusion such as syringe pump and infusion pump are widely used in hospitals and health facilities. Calibration of the equipments are crucial in order to identify any measurement errors and to avoid clinical losses which may lead to mortality. The equipments are generally calibrated by an Infusion Device Analyzer (IDA). To ensure the traceability of the calibration results, IDA needs to be calibrated, one of which is by the gravimetric methods. However, the biggest problem in the calibration of IDA is generating low flow rates with good repeatability and high precision. In this research, the high-precision liquid low flow rate generator system has been built using a closed-loop PID control with DC motor speed as feedback. The results showed that the system was able to generate low flow rates at 100 ml/h then down to 10 ml/h. The uncertainty of calibrations range were from 0.06% to 0.24% of reading, at 95% confidence level with a coverage factor k=2. Hence, the system is suitable to be used in IDA calibration.

Keywords: calibration, medical infusion, low flow rate, PID control, measurement uncertainty


Keywords


kalibrasi; peralatan infus medis; laju aliran rendah; kendali PID; ketidakpastian pengukuran

References


Al-Bargothi, S., Qaryouti, G., & Jaber, Q. (2019). Speed control of DC motor using conventional and adaptive PID controllers. Indonesian Journal of Electrical Engineering and Computer Science, 16, 1221. doi:10.11591/ijeecs.v16.i3.pp1221-1228

Batista, E., Almeida, N., Filipe, E., & Costa, A. (2013). Calibration and use of syringe pumps. International Congress of Metrology. Retrieved from https://doi.org/10.1051/metrology/201302007

Batista, E., Alves e Sousa, J., Ribeiro, Ã., Martins, L., Pereira, M., & Navas, H. (2018). Calibration of Infusion Pumps Analyser. Journal of Physics: Conference Series, 1065, 092003. doi:10.1088/1742-6596/1065/9/092003

Batista, E., Furtado, A., Pereira, J., Ferreira, M., Bissig, H., Graham, E., . . . Boudaoud, A. W. (2020a). New EMPIR project – Metrology for Drug Delivery. Flow Measurement and Instrumentation, 72, 101716. doi:https://doi.org/10.1016/j.flowmeasinst.2020.101716

Batista, E., Godinho, I., Céu Ferreira, M. d., Furtado, A., Lucas, P., & Silva, C. (2017). Comparison of infusion pumps calibration methods. Measurement Science and Technology, 28(12), 124003. doi:10.1088/1361-6501/aa8474

Batista, E., Godinho, I., Martins, R. F., Mendes, R., & Robarts, J. (2020b). Development of an experimental setup for microflow measurement using interferometry. Flow Measurement and Instrumentation, 75, 101789. doi:https://doi.org/10.1016/j.flowmeasinst.2020.101789

Batista, E., Sousa, J. A., Cardoso, S., & Silvério, V. (2020c). Experimental testing for metrological traceability and accuracy of liquid microflows and microfluidics. Flow Measurement and Instrumentation, 71, 101691. doi:https://doi.org/10.1016/j.flowmeasinst.2020.101691

Bissig, H., Petter, H. T., Lucas, P., Batista, E., Filipe, E., Almeida, N., . . . Sparreboom, W. (2015a). Primary standards for measuring flow rates from 100 nl/min to 1 ml/min – gravimetric principle. Biomedical Engineering / Biomedizinische Technik, 60(4), 301-316. doi:doi:10.1515/bmt-2014-0145

Bissig, H., Tschannen, M., & de Huu, M. (2015b). Micro-flow facility for traceability in steady and pulsating flow. Flow Measurement and Instrumentation, 44, 34-42. doi:https://doi.org/10.1016/j.flowmeasinst.2014.11.008

Chinarak, T., Leetang, K., & Wongthep, P. (2017). Calibration guideline for the infusion pump analyzer applied in secondary laboratories in Thailand. FLOMEKO 2016.

EURAMET cg-19. (2018). Guidelines on the Determination of Uncertainty in Gravimetric Volume Calibration

Gasparesc, G. (2016). PID control of a DC motor using Labview Interface for Embedded Platforms. 2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC). doi:10.1109/ISETC.2016.7781078

IEC 60601-2-24. (2012). Medical electrical equipment - Part 2-24: Particular requirements for the safety of infusion pumps and controllers

ISO 4787. (2021). – Laboratory glass and plastic ware – Volumetric instruments – Methods for testing of capacity and for use

Jaya, A., Purwanto, E., Fauziah, M. B., Murdianto, F. D., Prabowo, G., & Rusli, M. R. (2017, 26-27 Sept. 2017). Design of PID-fuzzy for speed control of brushless DC motor in dynamic electric vehicle to improve steady-state performance. Paper presented at the 2017 International Electronics Symposium on Engineering Technology and Applications (IES-ETA).

JCGM 100. (2008). Evaluation of measurement data – Guide to the Expression of Uncertainty in Measurement. Joint Committee for Guides in Metrology.

Ma'arif, A., & Setiawan, N. (2021). Control of DC Motor Using Integral State Feedback and Comparison with PID: Simulation and Arduino Implementation. Journal of Robotics and Control (JRC), 2. doi:10.18196/jrc.25122

Mamadapur, A., & Mahadev, G. U. (2019, 21-23 Aug. 2019). Speed Control of BLDC Motor Using Neural Network Controller and PID Controller. Paper presented at the 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC).

Rantung, J., & Luntungan, H. (2020). DC motor PID controller with pwm feedback. Jurnal Tekno Mesin 6(1)

Sirenden, B., Zaid, G., Prajitno, P., & Hafid. (2015). Development of Volumetric Micro-Flow Calibration System Using FPGA for Medical Application. 21st IMEKO World Congress on Measurement in Research and Industry.

Snijder, R. A., Konings, M. K., Lucas, P., Egberts, T. C., & Timmerman, A. D. (2015). Flow variability and its physical causes in infusion technology: a systematic review of in vitro measurement and modeling studies. Biomedical Engineering / Biomedizinische Technik, 60(4), 277-300. doi:doi:10.1515/bmt-2014-0148

Sousa, J. A., Batista, E., Demeyer, S., Fischer, N., Pellegrino, O., Ribeiro, A. S., & Martins, L. L. (2021). Uncertainty calculation methodologies in microflow measurements: Comparison of GUM, GUM-S1 and Bayesian approach. Measurement, 181, 109589. doi:https://doi.org/10.1016/j.measurement.2021.109589

Tanaka, M., Girard, G., Davis, R., Peuto, A., & Bignell, N. (2001). Recommended table for thedensity of water between 0 C and 40 C based on recent experimental reports. Metrologia, 38(4), 301-309. doi:10.1088/0026-1394/38/4/3

Tang, W., & Cao, S. (2018, 25-27 July 2018). A Fast Realization Method of Fuzzy PID Control for DC Motor. Paper presented at the 2018 37th Chinese Control Conference (CCC).

Timmerman, A. M., Snijder, R. A., Lucas, P., Lagerweij, M. C., Radermacher, J. H., & Konings, M. K. (2015). How physical infusion system parameters cause clinically relevant dose deviations after setpoint changes. Biomedical Engineering / Biomedizinische Technik, 60(4), 365-376. doi:doi:10.1515/bmt-2014-0139

Widyatmika, I. P. A. W., Ni Putu Ayu Widyanata, I., Prastya, I. W. W. A., Darminta, I. K., Sangka, I. G. N., & Sapteka, A. A. N. G. (2021). Perbandingan Kinerja Arduino Uno dan ESP32 Terhadap Pengukuran Arus dan Tegangan. Jurnal Otomasi, Kontrol, dan Instrumentasi, 13(1), 37-45. doi:10.5614/joki.2021.13.1.4




DOI: https://doi.org/10.26760/elkomika.v10i3.712

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License