Simultaneous Localization and Mapping pada Smart Automated Guided Vehicle menggunakan Iterative Closest Point berbasis K-Means Clustering
Abstract
ABSTRAK
Automated Guided Vehicle (AGV) merupakan salah satu jenis mobile robot yang digunakan untuk mengangkut barang menuju tempat tujuan. AGV mampu bekerja pada lingkungan yang dinamis tanpa menggunakan garis pemandu. Namun sebelumnya harus mempunyai informasi yang cukup terhadap lingkungan kerjanya. Teknik ini dikenal dengan Simulataneous Localization and Mapping (SLAM) yang digunakan robot untuk menggambar peta sekaligus mengetahui posisi robot di dalam peta. Pada penelitian ini, metode yang digunakan yaitu SLAM berbasis Iterative Closest Point (ICP) dengan algoritma K-Means yang menggunakan kumpulan titik dari sensor laser range finder (LRF) untuk membangun peta lingkungan. Pemetaan SLAM menggunakan algoritma K-Means memiliki error hasil scan jarak 77,69% lebih kecil dan waktu eksekusi 0,18% lebih cepat dibandingkan dengan KD-Tree. Peta yang dihasilkan dengan algoritma KMeans pada ICP-SLAM memberikan hasil yang lebih baik & mendekati keadaan ruangan sebenarnya dibandingkan menggunakan algoritma KD-Tree.
Kata kunci: ICP-SLAM, K-Means, Laser Range Finder.
Â
ABSTRACT
Automated Guided Vehicle (AGV) is a type of mobile robot that is used to transport goods to destination. AGV is able to work in a dynamic environment without guidelines. However, it must have sufficient information about its working environment beforehand. This technique is known as Simultaneous Localization and Mapping (SLAM) which is used by a robot to be able to draw a map as well as to determine its position on the map. In this research, the method used is SLAM based on Iterative Closest Point (ICP) with the K-Means algorithm that uses a collection of points from the Laser Range Finder (LRF) sensor to build an environmental map. SLAM using the K-Means algorithm has 77,69% smaller distance error and 0,18% faster execution time than KD-Tree. The map generated by the K-Means algorithm on an ICP-SLAM gives better results & closer to the actual state than using the KD-Tree.
Keywords: ICP-SLAM, K-Means, Laser Range Finder.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Aldibaja, M., Yanase, R., & Suganuma, N., Furuya, T., & Oko, A. (2021). LIDAR Graph SLAM based Autonomous Vehicle Maps using XY and Yaw Dead-Reckoning Measurements. IEEE International Conference on Mechatronics and Automation (ICMA), (pp. 1119-1125).
An, J., Mou, H., Lu, R., & Zhou, L. (2021). A Study on SLAM Based on Probabilistic Motion Model of Mobile Robot. International Conference on Robotics and Automation Sciences (ICRAS), (pp. 56-29).
Eom, H. D., & Jeon, J. W. (2014). Environment map building using low-cost IR sensors and a servo motor for mobile robot. International Symposium on Consumer Electronics (ISCE), (pp. 1-2).
Fallon, M. F., Folkesson, J., McClelland, H., & Leonard, J. J. (2013). Relocating Underwater Features Autonomously Using Sonar-Based SLAM. IEEE Journal of Oceanic Engineering, 38(3), 500-513.
Her, K. W., Kim, D. H., & Ha, J. E. (2012). Localization of mobile robot using laser range finder and IR landmark. International Conference on Control, Automation and Systems, (pp. 459-461).
Hui, C., & Shiwei, M. (2013). Visual SLAM based on EKF filtering algorithm from omnidirectional camera. International Conference on Electronic Measurement & Instruments, (pp. 660-663).
Kim, H. (2020). Performance Analysis of K Means Clustering Algorithms for mMTC Systems. International Conference on Information and Communication Technology Convergence (ICTC), (pp. 30-35).
Kusumo, A. A., Marta, B. S., Dewantara, B. S. B., & Pramadihanto, D. (2019). 2D Mapping and Localization using Laser Range Finder for Omnidirectional Mobile Robot. International Electronics Symposium (IES), (pp. 126-131).
Quan, S., & Chen, J. (2019). AGV Localization Based on Odometry and LiDAR. World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), (pp. 483-486).
Revanth, C. M., Saravanakumar, D., Jegadeeshwaran, R., & Sakthivel, G. (2020). Simultaneous Localization and Mapping of Mobile Robot using GMapping Algorithm. IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), (pp. 56-60).
Ruan, J., Li, B., Wang, Y., & Fang, Z. (2020). GP-SLAM+: real-time 3D lidar SLAM based on improved regionalized Gaussian process map reconstruction. International Conference on Intelligent Robots and Systems (IROS), (pp. 5171-5178).
Rufus, N., Nair, U. K. R., Avula, B., & Madiraju, V. (2020). SROM: Simple Real-time Odometry and Mapping using LiDAR data for Autonomous Vehicles. IEEE Intelligent Vehicles Symposium (IV), (pp. 1867-1872).
Taheri, H., Qiao, B., & Ghaeminezhad, N. (2015). Kinematic Model of a Four Mecanum Wheeled Mobile Robot. International Journal of Computer Applications, 113, pp. 6-9.
Wang, D., Liang, H., Mei, T., Zhu, H., Fu, J., & Tao, X. (908-912). Lidar Scan matching EKFSLAM using the differential model of vehicle motion. Intelligent Vehicles Symposium, (p. 2013).
Yu, J., Yu, C., Lin, C., & Wei, F. (2021). Improved Iterative Closest Point (ICP) Point Cloud Registration Algorithm based on Matching Point Pair Quadratic Filtering. International Conference on Computer, Internet of Things and Control Engineering (CITCE), (pp. 1-5).
DOI: https://doi.org/10.26760/elkomika.v10i4.742
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.