Multi-Abnormal ECG Signal Classification using Dispersion Entropy and Statistic Feature
Sari
ABSTRAK
Elektrokardiogram (EKG) adalah salah satu perangkat medis yang paling banyak digunakan untuk mendiagnosis masalah jantung. Sinyal abnorma EKG mempunyai variasi dan beberapa mirip antara yang satu dengan lainnya. Oleh karena itu, pada penelitian ini diusulkan metode klasifikasi kelainan jantung berdasarkan EKG menggunakan fitur statistik orde satu dan Dispersion Entropy (DisEn) untuk tahap ekstraksi ciri. Sedangkan untuk tahap klasifikas sinyal EKG multi-abnormal, kami membandingkan metode Support Vector Machine (SVM) dan K-Nearest Neighbor (KNN). Pada penelitian ini diklasifikasikan tujuh kelas EKG, yaitu Normal, Atrial Fibrillation (AFIB), Atrial Flutter (AFL), Atrial Premature Beats (APB), Begiminy, Left Bundle Branch Block (LBBB), dan Premature Ventricular Contraction (PVC). Dari simulasi ini, sistem dapat mendeteksi sinyal normal dan abnormal dengan akurasi 85,1% menggunakan K-NN. Sementara itu, pada simulasi klasifikasi tujuh kelas sinyal EKG menghasilkan akurasi hingga 75.1%.
Kata kunci: EKG, klasifikasi, Dispersion Entropy, statistik
Â
ABSTRACT
Electrocardiogram (ECG) is one of the most widely used medical devices to diagnose heart disease. Abnormal ECG signals have variations and some are similar to another. Therefore, in this study, proposed a method for classifying cardiac abnormalities based on ECG using first-order statistical features and Dispersion Entropy (DisEn) for feature extraction. Meanwhile, for the multiabnormal ECG signal classification stage, we compared the Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) methods. In this study, seven ECG classes were classified, namely Normal, Atrial Fibrillation (AFIB), Atrial Flutter (AFL), Atrial Premature Beats (APB), Begiminy, Left Bundle Branch Block (LBBB), and Premature Ventricular Contraction (PVC). From this simulation, the system can detect normal and abnormal signals with an accuracy of 85.1% using K-NN. Meanwhile, the classification simulation of seven classes of ECG signals produces an accuracy of up to 75.1%.
Keywords: ECG, classification, Dispersion Entropy, statistics
Kata Kunci
Teks Lengkap:
PDF (English)Referensi
Aulia, S., & Hadiyoso, S. (2021). Abnormal ECG Classification using Empirical Mode Decomposition and Entropy. Jurnal Rekayasa Elektrika, 17(3), 191–198. https://doi.org/10.17529/jre.v17i3.22070.
Aulia, S., Hadiyoso, S., & Ramadan, D. N. (2015). Analisis Perbandingan KNN dengan SVM untuk Klasifikasi Penyakit Diabetes Retinopati berdasarkan Citra Eksudat dan Mikroaneurisma. Elkomika, 3(1), 75–90.
Azami, H., & Escudero, J. (2018). Amplitude- and fluctuation-based dispersion entropy. Entropy, 20(3), 1–21. https://doi.org/10.3390/e20030210.
Candra, H., Yuwono, M., Chai, R., Nguyen, H. T., & Su, S. (2017). EEG emotion recognition using reduced channel wavelet entropy and average wavelet coefficient features with normal Mutual Information method. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (pp. 463–466). https://doi.org/10.1109/EMBC.2017.8036862.
Devi, M. C., & Audithan, S. (2017). Diagnosis of Breast Cancer using Wavelet Entropy Features. International Journal of Electrical and Computer Engineering (IJECE), 10(1), 45–51.
Esmael, B., Fruhwirth, R. K. dan Thonhauser, G. (2013). A Statistical Features Based Approach for Operations Recognition. Drilling Time Series, 5, 4545.
Estananto, N. (2018). Klasifikasi Sinyal Elektrokardiogram Menggunakan Renyi Entropy. Jurnal Elektro Dan Mesin Terapan, 4(2), 11–18. https://doi.org/10.35143/elementer.v4i2.2139.
Hassanat, A. B., Abbadi, M. A., & Alhasanat, A. A. (2014). Solving the Problem of the K Parameter in the KNN Classifier Using an Ensemble Learning Approach. International Journal of Computer Science and Information Security, 12(8), 33–39. https://doi.org/10.1007/s00500-005-0503-y.
He, H., Tan, Y., & Wang, Y. (2015). Optimal Base Wavelet Selection for ECG Noise Reduction Using a Comprehensive Entropy Criterion. Entropy, 17(12), 6093–6109. https://doi.org/10.3390/e17096093.
Humeau-Heurtier, A. (2018). Evaluation of Systems’ Irregularity and Complexity: Sample Entropy, Its Derivatives, and Their Applications across Scales and Disciplines. Entropy, 20(10), 794. https://doi.org/10.3390/e20100794.
Kafantaris, E., Piper, I., Lo, T.-Y. M., & Escudero, J. (2019). Application of Dispersion Entropy to Healthy and Pathological Heartbeat ECG Segments. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (pp. 2269–2272). https://doi.org/10.1109/EMBC.2019.8856554.
Kaur, M., & Arora, A. S. (2012). Classification of ECG signals using LDA with factor analysis method as feature reduction technique. Journal of Medical Engineering & Technology, 36(8), 411–420. https://doi.org/10.3109/03091902.2012.702851.
Madan, A., & Gupta, D. (2014). Speech Feature Extraction and Classification: A Comparative Review. International Journal of Computer Applications, 90(9), 20–25. http://ijcaonline.com/archives/volume90/number9/15603-4392.
Maniyan, P., & Shivakumar, B. L. (2018). Detection of Diseases using Nail Image Processing Based on Multiclass SVM Classifier Method. Ijesc, 8(5), 17382–17390.
Manullang, M. C. T., Simanjuntak, J., & Ramdani, A. L. (2019). Implementation of AD8232 ECG Signal Classification Using Peak Detection Method For Determining RST Point. Indonesian Journal of Artificial Intelligence and Data Mining, 2(2), 61. https://doi.org/10.24014/ijaidm.v2i2.7593.
Martis, R. J., Acharya, U. R., & Min, L. C. (2013). ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform. Biomedical Signal Processing and Control, 8(5), 437–448. https://doi.org/10.1016/j.bspc.2013.01.005.
Natwong, B., Sooraksa, P., Pintavirooj, C., Bunluechokchai, S., & Ussawawongaraya, W. (2006). Wavelet Entropy Analysis of the High Resolution ECG. 2006 1ST IEEE Conference on Industrial Electronics and Applications, (pp. 1–4). https://doi.org/10.1109/ICIEA.2006.257276.
Pestana, J., Belo, D., & Gamboa, H. (2020). Detection of Abnormalities in Electrocardiogram (ECG) using Deep Learning. Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies, (pp. 236–243). https://doi.org/10.5220/0008967302360243.
Redelico, F. O., Traversaro, F., GarcÃa, M. del C., Silva, W., Rosso, O. A., & Risk, M. (2017). Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier. Entropy, 19(2), 1–12. https://doi.org/10.3390/e19020072.
Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), 2039–2049. https://doi.org/10.1111/j.1468-0084.1985.mp47002006.x.
Rizal, A., & Hadiyoso, S. (2018). Sample Entropy on Multidistance Signal Level Difference for Epileptic EEG Classification. The Scientific World Journal, 2018, 1–6. https://doi.org/10.1155/2018/8463256.
Rostaghi, M., & Azami, H. (2016). Dispersion Entropy: A Measure for Time-Series Analysis. IEEE Signal Processing Letters, 23(5), 610–614.
https://doi.org/10.1109/LSP.2016.2542881.
Sahoo, S., Mohanty, M., Behera, S., & Sabut, S. K. (2017). ECG beat classification using empirical mode decomposition and mixture of features. Journal of Medical Engineering & Technology, 41(8), 652–661. https://doi.org/10.1080/03091902.2017.1394386.
Sharma, R., Pachori, R., & Acharya, U. (2015). Application of Entropy Measures on Intrinsic Mode Functions for the Automated Identification of Focal Electroencephalogram Signals. Entropy, 17(2), 669–691. https://doi.org/10.3390/e17020669.
Si-yang, H. U., Kui, D., Wang, Q., Chao-hao, Z., Yong-jie, Y. I., & Chang-rong, Y. (n.d.). A Detection and Analysis System of ECG Signals Based on Wavelet Entropy. IJSSST, (pp. 1–6). https://doi.org/10.5013.
Venkatesan, C., Karthigaikumar, P., Paul, A., Satheeskumaran, S., & Kumar, R. (2018). ECG Signal Preprocessing and SVM Classifier-Based Abnormality Detection in Remote Healthcare Applications. IEEE Access, 6, 9767–9773. https://doi.org/10.1109/ACCESS.2018.2794346.
Wei-quan, W., Pan, L. U., Jia-lun, L. I. N., & Jin, Z. (2016). ECG Identification Based on Wavelet Transform. Joint International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC), (pp. 497–501).
Zanin, M., Zunino, L., Rosso, O. A., & Papo, D. (2012). Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review. Entropy, 14(8), 1553–1577. https://doi.org/10.3390/e14081553.
Wijayanto, I., Humairani, A., Rizal, A., & Hadiyoso, S. (2022). Klasifikasi Sinyal EKG menggunakan Ciri Statistik dan Parameter Hjorth dengan SVM dan k-NN. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10 (1), 132–145.
Zaylaa, A. J., Harb, A., Khatib, F. I., Nahas, Z., & Karameh, F. N. (2015). Entropy complexity analysis of electroencephalographic signals during pre-ictal, seizure and post-ictal brain events. 2015 International Conference on Advances in Biomedical Engineering (ICABME), (pp. 134–137). https://doi.org/10.1109/ICABME.2015.7323270.
Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for kNN Classification. ACM Transactions on Intelligent Systems and Technology, 8(3), 1–19. https://doi.org/10.1145/2990508.
DOI: https://doi.org/10.26760/elkomika.v10i3.677
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2459-9638
diterbitkan oleh :
Teknik Elektro Institut Teknologi Nasional Bandung
Alamat : Gedung 20 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 206) Fax. 7202892
Surat Elektronik : jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Statistik Pengunjung
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.