Sistem Pendinginan Panel Surya dengan Metode Penyemprotan Air dan Pengontrolan Suhu Air menggunakan Peltier
Sari
ABSTRAK
Salah satu faktor yang dapat mempengaruhi efisiensi panel surya adalah suhu pada modul panel surya. Efisiensi panel surya akan menurun seiring dengan naiknya suhu panel surya. Oleh karena itu, dibutuhkan suatu mekanisme pendinginan pada sistem panel surya untuk dapat meningkatkan efisiensi panel surya. Pada penelitian ini, dirancang sebuah sistem pendinginan panel surya dengan metode penyemprotan air dan pengontrolan suhu air. Jika suhu telah mencapai 40oC, pompa yang terdapat pada bak penampungan air akan bekerja mengalirkan air ke permukaan panel surya. Dengan demikian, suhu pada panel surya dapat dikontrol agar sesuai dengan set point yang diinginkan yakni di bawah 40oC. Sistem pengontrolan suhu air dengan peltier dan fan dilakukan untuk mengontrol suhu air di dalam bak penampungan air agar tetap berada pada suhu maksimal 39oC. Sistem pendinginan panel surya pada penelitian ini mampu meningkatkan daya keluaran panel surya sebesar 30,19%.
Kata kunci: panel surya, pendingin, semprotan air, peltier
Â
ABSTRACT
The solar panels efficiency can be affected by the the temperature of the solar panel module. It will decrease as the temperature of the solar panels increases. Therefore, a cooling mechanism in the solar panel system is needed to increase the efficiency of the solar panels. In this study, a solar panel cooling system was designed with the method of spraying water and controlling water temperature. If the temperature has reached 40oC, the pump in the water reservoir will work to circulate water to the surface of the solar panel. Thus, the temperature on the solar panel can be controlled to match the desired set point, which is below 40oC. The water temperature control system with peltier and fan is carried out to control the temperature of the water in the water reservoir so that it remains at the maximum temperature of 39oC. The solar panel cooling system in this study was able to increase the solar panel output power by 30.19% when using the cooling system.
Keywords: solar panels, cooling, water spray, peltier
Kata Kunci
Teks Lengkap:
PDFReferensi
Cabo, F. G., Nizetic, S., & Marco, T. G. (2016). Photovoltaic Panels: A Review of The Cooling Techniques: EBSCOhost. Transactions of FAMENA, 40(1), 63-74.
Chikate, B. V, & Sadawarte, Y. A. (2015). The Factors Affecting the Performance of Solar Cell. International Journal of Computer Applications, 1–5. http://research.ijcaonline.org/icquest2015/number1/icquest2776.pdf
Farhana, Z. (2012). Experimental Investigation of Photovoltaic Modules Cooling System. IEEE Symposium on Computers & Informatics.
Farshchimonfared, M., Bilbao, J. I., & Sproul, A. B. (2015). Channel depth, air mass flow rate and air distribution duct diameter optimization of photovoltaic thermal (PV/T) air collectors linked to residential buildings. Renewable Energy, 76, 27–35. https://doi.org/10.1016/j.renene.2014.10.044
Hussein, H. A., Numan, A. H., & Abdulrahman, R. A. (2017). Improving the Hybrid Photovoltaic / Thermal System Performance Using Water-Cooling Technique and Zn-H 2 O Nanofluid. 2017(3).
Kementerian Energi dan Sumber Daya Mineral. (2012). Matahari Untuk PLTS Di Indonesia. https://www.esdm.go.id/id/media-center/arsip-berita/matahari-untuk-plts-diindonesia#:~: text=Potensi energi surya di Indonesia,adalah sebesar 0.87 GW atau
Moharram, K. A., Abd-Elhady, M. S., Kandil, H. A., & El-Sherif, H. (2013). Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Engineering Journal, 4(4), 869–877. https://doi.org/10.1016/j.asej.2013.03.005
Nižetić, S., Giama, E., & Papadopoulos, A. M. (2018). Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part II: Active cooling techniques. Energy Conversion and Management, 155, 301–323. https://doi.org/10.1016/j.enconman.2017.10.071
Popovici, C. G., Hudişteanu, S. V., Mateescu, T. D., & Cherecheş, N. C. (2016). Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks. Energy Procedia, 85, 425–432. https://doi.org/10.1016/j.egypro.2015.12.223
Pourakbar, A., & Deldadeh, B. (2014). Thermal Effects Investigation on Electrical Properties of Silicon Solar Cells Treated by Laser Irradiation. International Journal of Renewable Energy Development, 3, 184–187. https://doi.org/10.14710/ijred.3.3.184-187
Shukla, A., Kant, K., Sharma, A., & Biwole, P. H. (2017). Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Solar Energy Materials and Solar Cells, 160, 275–286. https://doi.org/10.1016/j.solmat.2016.10.047
Smith, M. K., Selbak, H., Wamser, C. C., Day, N. U., Krieske, M., Sailor, D. J., & Rosenstiel, T. N. (2014). Water cooling method to improve the performance of field-mounted, insulated, and concentrating photovoltaic modules. Journal of Solar Energy Engineering, Transactions of the ASME, 136(3), 5–8. https://doi.org/10.1115/1.4026466
Tabaei, H., & Ameri, M. (2015). Improving the effectiveness of a photovoltaic water pumping system by using booster reflector and cooling array surface by a film of water. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 39(M1), 51–60.
Teo, H. G., Lee, P. S., & Hawlader, M. N. A. (2012). An active cooling system for photovoltaic modules. Applied Energy, 90(1), 309–315. https://doi.org/10.1016/j.apenergy.2011.01.017
Zilli, B. M., Lenz, A. M., de Souza, S. N. M., Secco, D., Nogueira, C. E. C., Junior, O. H. A., Nadaleti, W. C., Siqueira, J. A. C., & Gurgacz, F. (2018). Performance and effect of water-cooling on a microgeneration system of photovoltaic solar energy in Paraná Brazil. Journal of Cleaner Production, 192, 477–485. https://doi.org/10.1016/j.jclepro.2018.04.241
DOI: https://doi.org/10.26760/elkomika.v10i3.652
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.