Estimasi Utilisasi Prosesor pada Jaringan Interkoneksi Optik menggunakan Regresi Gaussian

HILAL HUDAN NUHA, AULIA ARIF WARDANA

Abstract


ABSTRAK

Teknologi prosesor paralel melibatkan lebih dari satu node prosesor dalam interkoneksi optik. Unjuk kerja dari desain dari jaringan optik tersebut harus diestimasi sebelum diimplementasikan. Atribut yang bisa diambil diambil dari desain tersebut yaitu nomor node dan thread, distribusi spasial dan temporal, dan rasio T/R. Kajian ini mengevaluasi teknik estimasi utilitasi prosesor menggunakan regresi Gaussian yang dibandingkan dengan Support Vector Machine untuk regresi dan regresi linear. Hasil percobaan penunjukkan bahwa regresi Gaussian menghasilkan akurasi estimasi paling tinggi dengan nilai koefisien determinasi sebesar 98.75%.

Kata kunci: Utilisasi prosesor, interkoneksi optik, regresi Gaussian

 

ABSTRACT

Parallel processor technology involves more than one processor node in an optical interconnection. The performance of the design of the optical network must be estimated before further deployment. The attributes that can be obtained from the design are the number of nodes and threads, the spatial and temporal distribution, and the T/R ratio. This study evaluates the processor utility estimation technique using Gaussian regression compared to the Support Vector Machine for linear regression and regression. The experimental results show that Gaussian regression produces the highest estimation accuracy with a coefficient of determination of 98.75%.

Keywords: Processor Utilization, Optical Interconnection, Gaussian Regression


Keywords


Utilisasi prosesor; interkoneksi optik; regresi Gaussian

References


Akay, M. F., Aci, Ç. I., & Abut, F. A. T. İ. H. (2015). Predicting the performance measures of a 2-dimensional message passing multiprocessor architecture by using machine learning methods. Neural Network World, 25(3), 241.

Akay, M. F., & Abasıkeleş, I. (2010). Predicting the performance measures of an optical distributed shared memory multiprocessor by using support vector regression. Expert Systems with Applications, 37(9), 6293-6301.

Alebele, Y., Wang, W., Yu, W., Zhang, X., Yao, X., Tian, Y., ... & Cheng, T. (2021). Estimation of Crop Yield From Combined Optical and SAR Imagery Using Gaussian Kernel Regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 14, 10520-10534.

Avendaño-Valencia, L. D., Abdallah, I., & Chatzi, E. (2021). Virtual fatigue diagnostics of wakeaffected wind turbine via Gaussian Process Regression. Renewable Energy, 170, 539-561.

Ballabio, C., Lugato, E., Fernández-Ugalde, O., Orgiazzi, A., Jones, A., Borrelli, P., ... & Panagos, P. (2019). Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma, 355, 113912.

de Campos Souza, P. V., Soares, E. A., Guimarães, A. J., Araujo, V. S., Araujo, V. J. S., & Rezende, T. S. (2021). Autonomous data density pruning fuzzy neural network for optical interconnection network. Evolving Systems, 12(4), 899-911.

Deringer, V. L., Bartók, A. P., Bernstein, N., Wilkins, D. M., Ceriotti, M., & Csányi, G. (2021). Gaussian process regression for materials and molecules. Chemical Reviews, 121(16), 10073-10141.

Gaussian Process Regression Models. n.d. Accessed February 16, 2022.

https://www.mathworks.com/help/stats/gaussian-process-regression-models.html.

Ghasemi, P., Karbasi, M., Nouri, A. Z., Tabrizi, M. S., & Azamathulla, H. M. (2021). Application of Gaussian process regression to forecast multi-step ahead SPEI drought index. Alexandria Engineering Journal, 60(6), 5375-5392.

Iannace, G., & Ciaburro, G. (2021). Modelling sound absorption properties for recycled polyethylene terephthalate-based material using Gaussian regression. Building Acoustics, 28(2), 185-196.

Kong, D., Chen, Y., & Li, N. (2018). Gaussian process regression for tool wear prediction. Mechanical systems and signal processing, 104, 556-574.

Li, X., Yuan, C., Li, X., & Wang, Z. (2020). State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression. Energy, 190, 116467.

Li, X., Yuan, C., & Wang, Z. (2020). Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression. Journal of Power Sources, 467, 228358.

Mardalena, S., Purhadi, P., Purnomo, J. D. T., & Prastyo, D. D. (2020). Parameter estimation and hypothesis testing of multivariate Poisson inverse Gaussian regression. Symmetry, 12(10), 1738.

Healey, R., Dowers, S., Gittings, B., & Mineter, M. J. (Eds.). (2020). Parallel processing algorithms for GIS. CRC Press.

Richardson, R. R., Osborne, M. A., & Howey, D. A. (2017). Gaussian process regression for forecasting battery state of health. Journal of Power Sources, 357, 209-219.

Sawant, M. M., & Bhurchandi, K. (2019). Hierarchical facial age estimation using Gaussian process regression. IEEE Access, 7, 9142-9152.

Schulz, E., Speekenbrink, M., & Krause, A. (2018). A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology, 85, 1-16.

Solin, A., & Särkkä, S. (2020). Hilbert space methods for reduced-rank Gaussian process regression. Statistics and Computing, 30(2), 419-446.

Zayid, E. I. M., & Akay, M. F. (2013). Predicting the performance measures of a messagepassing multiprocessor architecture using artificial neural networks. Neural Computing and Applications, 23(7), 2481-2491.

Zayid, E. I. M., & Akay, M. F. (2013b, August). Reliable attributes selection technique for predicting the performance measures of a dsm multiprocessor architecture. In 2013 International Conference On Computing, Electrical And Electronic Engineering (ICCEEE) (pp. 209-215). IEEE.

Zhao, J., Guo, H., Han, M., Tang, H., & Li, X. (2019). Gaussian process regression for prediction of sulfate content in lakes of China. Journal of Engineering and Technological Sciences, 51(2), 198-215.




DOI: https://doi.org/10.26760/elkomika.v10i3.702

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License