Prediksi Channel Gain Threshold untuk Modulasi Adaptif V2V menggunakan Algoritma Random Forest Regression
Abstract
ABSTRAK
Kondisi kendaraan yang saling bergerak pada sistem komunikasi Vehicle-to-Vehicle (V2V) menyebabkan daya sinyal yang diterima berfluktuasi. Selain itu, dengan adanya pergeseran frekuensi Doppler mengakibatkan semakin sulitnya menjaga level Bit Error Rate (BER) kurang dari 0,001. Mengubah threshold channel gain pada modulasi adaptif adalah salah satu metode yang dapat diterapkan untuk menjaga level performansi tanpa mengorbankan nilai Signal to Noise Ratio (SNR). Sayangnya threshold yang memberikan SNR optimal belum diketahui. Pada penelitian ini digunakan algoritma random forest regression untuk mencari nilai threshold channel gain demi didapatkannya nilai SNR terbaik. Dari hasil prediksi dengan jumlah estimator sebanyak 7, didapatkan threshold 0.1Â dan 0.3 hanya membutuhkan SNR sebesar 25.59 dB untuk menjaga BER di level
< 0.001.
Kata kunci: Modulasi Adaptif, Pergeseran Doppler, Random Forest Regression
Â
ABSTRACT
The condition of the moving vehicles in the Vehicle-to-Vehicle (V2V) communication system leads to fluctuating received signal power. In addition, the Doppler shift increases the difficulty to maintain the Bit Error Rate (BER) less than 0.001. Changing the channel gain threshold in adaptive modulation is one method that can be applied to maintain the performance level without sacrificing the Signal to Noise Ratio (SNR) value. Unfortunately, the threshold that provides the optimal SNR is not yet known. In this research, a random forest regression algorithm is used to determine the channel gain threshold in order to obtain the best SNR value. Based on the prediction results the number of estimators of 7, it is obtained that the thresholds of 0.1 and 0.3 only require an SNR of 25.59 dBÂ to keep the BER at the level < 0.001.
Keywords: Adaptive Modulation, Doppler Shift, Random Forest Regression
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Abbas, O. M. (2017). Forecasting with Machine Learning. International Journal of Computer (IJC), 26(1), 184–194.
Abdelgader, A. M. S., & Lenan, W. (2014). The Physical Layer of the IEEE 802.11p WAVE Communication Standard: The Specifications and Challenges. Proceedings of the World Congress on Engineering and Computer Science.
Arena, F., Pau, G., & Severino, A. (2020). A Review on IEEE 802.11p for Intelligent Transportation Systems. Journal of Sensor and Actuator Networks, 9(2), 22. https://doi.org/10.3390/jsan9020022
Bonaccorso, G. (2017). Machine Learning Algorithms: A reference guide to popular algorithms for data science and machine learning. Packt Publishing Ltd.
Gogas, P., & Papadimitriou, T. (2021). Machine Learning in Economics and Finance. Computational Economics, 57(1), 1–4. https://doi.org/10.1007/s10614-021-10094-w
Gomez-Vega, C. A., Jaime-Rodriguez, J. J., Gutierrez, C. A., & Velazquez, R. (2017). Bit error rate performance analysis of vehicular communication systems considering velocity variations of the mobile stations. 2017 IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII), 1–6. https://doi.org/10.1109/CONCAPAN.2017.8278502
Gupta, N., & Nath Kaush, B. (2017). Machine Learning in Biomedical Mining for Disease Detection. Journal of Artificial Intelligence, 11(1), 39–47. https://doi.org/10.3923/jai.2018.39.47
Halegoua, G. R. (2020). Smart Cities. The MIT Press.
Jaya, T., Gopinathan, E., & Rajendran, V. (2016). Comparison of BER Performance of Various Adaptive Modulation Schemes in OFDM Systems. Indian Journal of Science and Technology, 9(40). https://doi.org/10.17485/ijst/2016/v9i40/99588
Kurniawati, N., Fahmi, A., & Alam, S. (2021). Predicting Rectangular Patch Microstrip Antenna Dimension Using Machine Learning. Journal of Communications, 16(9), 394–399. https://doi.org/10.12720/jcm.16.9.394-399
Kurniawati, N., Ningsih, Y. K., Puspa, S. D., & Adi, T. S. (2021). Algoritma Epsilon Greedy pada Reinforcement Learning untuk Modulasi Adaptif Komunikasi Vehicle to Infrastructure (V2I). ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(3), 716. https://doi.org/10.26760/elkomika.v9i3.716
Kurniawati, N., Novita Nurmala Putri, D., & Kurnia Ningsih, Y. (2020). Random Forest Regression for Predicting Metamaterial Antenna Parameters. 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE), 174–178. https://doi.org/10.1109/ICIEE49813.2020.9276899
Nafea, I. T. (2018). Machine Learning in Educational Technology. In Machine Learning - Advanced Techniques and Emerging Applications. InTech. https://doi.org/10.5772/intechopen.72906
Novfitri, A., Suryani, T., & Suwadi. (2018). Performance Analysis of Vehicle-to-Vehicle Communication with Adaptive Modulation. 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 187–191. https://doi.org/10.1109/EECCIS.2018.8692895
Patel, C. S., Stuber, G. L., & Pratt, T. G. (2005). Simulation of Rayleigh-Faded Mobile-to-Mobile Communication Channels. IEEE Transactions on Communications, 53(11), 1876–1884. https://doi.org/10.1109/TCOMM.2005.858678
Raju, M., & Reddy, K. A. (2016). Evaluation of BER for AWGN, Rayleigh fading channels under M-QAM modulation scheme. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 3081–3086. https://doi.org/10.1109/ICEEOT.2016.7755268
Sassi, A., Charfi, F., Kamoun, L., Elhillali, Y., & Rivenq, A. (2012). OFDM Transmission Performance Evaluation in V2X Communication. International Journal of Computer Science Issues, 9(2), 141–148. http://arxiv.org/abs/1410.8039
Sullivan, W. (2018). Decision Tree And Random Forest: Machine Learning And Algorithms: The Future Is Here! CreateSpace Independent Publishing Platform.
Theodoridis, S. (2020). Mean-Square Error Linear Estimation. In Machine Learning (pp. 121–177). Elsevier. https://doi.org/10.1016/B978-0-12-818803-3.00013-1
Thomas, B. (2016). Proposed rule would mandate vehicle-to-vehicle (V2V) communication on light vehicles, allowing cars to “talk†to each other to avoid crashes. National Highway Traffic Safety Information.
Wang, W., Liu, H., Lin, W., Chen, Y., & Yang, J.-A. (2020). Investigation on Works and Military Applications of Artificial Intelligence. IEEE Access, 8, 131614–131625. https://doi.org/10.1109/ACCESS.2020.3009840
Zajic, A. (2013). Mobile-to-Mobile Wireless Channels. Artech House.
DOI: https://doi.org/10.26760/elkomika.v10i3.544
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.