MPPT Fuzzy Logic dengan Pengendali PI pada Generator Sinkron Magnet Permanen untuk Aplikasi Pembangkit Listrik Pikohidro
Abstract
ABSTRAK
Perubahan laju aliran air pada pembangkit listrik pikohidro dapat menyebabkan daya dan tegangan yang dihasilkan generator menjadi tidak stabil. Penelitian ini bertujuan untuk merancang Maximum Power Point Tracking (MPPT) dengan algoritma logika fuzzy pada Permanent Magnet Synchronous Generator (PMSG) dengan penstabil tegangan untuk aplikasi pembangkit listrik pikohidro. Pada penelitian ini digunakan dua unit konverter DC/DC tipe buck-boost yang dipasang secara serial. MPPT logika fuzzy dirancang untuk mengendalikan konverter pertama, sedangkan pengendali PI digunakan pada konverter kedua. Hasil pengujian secara simulasi dengan skenario kecepatan turbin konstan menunjukkan PMSG mampu menghasilkan daya maksimum 167 Watt pada kecepatan turbin 600 rpm dengan tegangan keluaran 14 V. Pengujian dengan skenario perubahan kecepatan turbin dan perubahan beban menunjukkan PMSG mampu menjejaki daya maksimum serta menghasilkan tegangan keluaran yang stabil dengan overshoot terbesar sekitar 33%.
Kata kunci: MPPT, PMSG, logika fuzzy, pengendali PI, pikohidro
Â
ABSTRACT
The changes in the water flow rate on pycohydro power plant can cause the power and voltage generated by the generator to become unstable. This study aims to design Maximum Power Point Tracking (MPPT) with fuzzy logic algorithm on Permanent Magnet Synchronous Generator (PMSG) with voltage regulator for picohydro power plant applications. In this study, two units buck-boost DC/DC converter were installed in series. The fuzzy logic MPPT is designed to control the first converter, while the PI controller is used in the second converter. Simulation test results with a constant turbine speed scenario show that PMSG is able to produce a maximum power of 167 Watts at a turbine speed of 600 rpm with an output voltage of 14 V. Tests with scenarios of changes in turbine speed and changes in load show PMSG is able to track maximum power and produce a stable output voltage with the biggest overshoot is about 33%.
Keywords: MPPT, PMSG, fuzzy logic, PI controller, pycohydro
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Abdellatif, W. S. E., Mohamed, M. S., Barakat, S., & Brisha, A. (2021). A Fuzzy Logic Controller Based MPPT Technique for Photovoltaic Generation System. 13(2), 394–417.
Abdullah, Javed, A., Ashraf, J., & Khan, T. (2020). The impact of renewable energy on GDP. International Journal of Management and Sustainability, 9(4), 239–250.
Acharya, P., Papadakis, A., & Shaikh, M. N. (2016). Modelling and Design of a 3 kW Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines. MATEC Web of Conferences, 55, 6–11.
Aljarhizi, Y., Hassoune, A., & Al Ibrahmi, E. M. (2019). Control Management System of a Lithium-ion Battery Charger Based MPPT algorithm and Voltage Control. 2019 International Conference on Optimization and Applications, ICOA 2019, June, (pp. 1-6).
Assegaf, A., Aming, D., & Alvianto, F. (2021). Perancangan maximum power point tracking dengan algoritma incremental conductance untuk PLTS 100 Wp. JITEL (Jurnal Ilmiah Telekomunikasi, Elektronika, Dan Listrik Tenaga), 1(1), 1–8.
Ben Ali, R., Schulte, H., & Mami, A. (2017). Modeling and simulation of a small wind turbine system based on PMSG generator. IEEE Conference on Evolving and Adaptive Intelligent Systems, 2017-May(October), (pp. 1-6).
Chen, J., Yang, H. X., Liu, C. P., Lau, C. H., & Lo, M. (2013). A novel vertical axis water turbine for power generation from water pipelines. Energy, 54(November), 184–193.
Djørup, S., Thellufsen, J. Z., & Sorknæs, P. (2018). The electricity market in a renewable energy system. Energy, 162, 148–157.
Halimatussadiah, A., Amanda, A., & Maulia, R. F. (2020). Unlocking Renewable Energy Potential in Indonesia : Assessment on Project Viability. July, 1–10.
Jaya, V., & Sujono. (2018). Perancangan Maximum Power Point Tracking ( MPPT ) Pada Turbin Angin PMSG Kapasitas 300 Watt Dengan Algoritma Fuzzy. Jurnal Maestro, 1(2), 323–329.
Kaouane, M., Boukhelifa, A., & Cheriti, A. (2016). Regulated output voltage double switch Buck-Boost converter for photovoltaic energy application. International Journal of Hydrogen Energy, 41(45), 20847–20857.
Karbakhsh, M., Abutorabi, H., & Khazaee, A. (2012). An enhanced MPPT fuzzy control of a wind turbine equipped with permanent magnet synchronous generator. 2012 2nd International EConference on Computer and Knowledge Engineering, ICCKE 2012, (pp. 77–82).
Karthi, K., Radhakrishnan, R., Baskaran, J. M., & Titus, L. S. (2019). Analysis of Adaptive MPPT Control Algorithm for Direct Driven Permanent Magnet Synchronous Generator. Proceedings of the 2019 2nd International Conference on Power and Embedded Drive Control, ICPEDC 2019, (pp. 140–145).
Kerdtuad, P., Simma, T., Chaiamarit, K., & Visawaphatradhanadhorn, S. (2018). Establishment of a Pico Hydro Power Plant Using Permanent Magnet Synchronous Generator Supplied for AC Microgrid. IEECON 2018 - 6th International Electrical Engineering Congress, (pp. 1–4).
Khan, U. H., Alam, Z., Ahmad, W., Khan, Z. A., Khan, R., & Ullah, Z. (2020). Backstepping based MPPT Control Technique for Permanent Magnet Synchronous Generator Wind Energy Conversion System. 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies: Idea to Innovation for Building the Knowledge Economy, ICoMET 2020, (pp. 1-7).
Motwani, K. H., Jain, S. V., & Patel, R. N. (2013). Cost analysis of pump as turbine for pico hydropower plants - A case Study. Procedia Engineering, 51(NUiCONE 2012), (pp. 721–726).
Nicy, C. F., & Punitharaji, R. (2014). Isolated wind-hydro hybrid system using permanent magnet synchronous generator and battery storage with fuzzy logic controller. Proceeding of the IEEE International Conference on Green Computing, Communication and Electrical Engineering, ICGCCEE 2014, (pp. 634–641).
Tiwari, R., & Babu, N. R. (2016). Fuzzy logic based MPPT for permanent magnet synchronous generator in wind energy conversion system. IFAC-PapersOnLine, 49(1), 462–467.
Williamson, S. J., Griffo, A., Stark, B. H., & Booker, J. D. (2013). Control of parallel single-phase inverters in a low-head pico-hydro off-grid network. IECON Proceedings (Industrial Electronics Conference), (pp. 1571–1576).
Williamson, S. J., Stark, B. H., & Booker, J. D. (2013). Performance of a low-head pico-hydro Turgo turbine. Applied Energy, 102, 1114–1126.
DOI: https://doi.org/10.26760/elkomika.v10i1.146
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.