Peningkatan Kinerja Switched Reluctance Generator dengan Pergeseran Sudut Penyalaan

RIZKY AMALIA, SLAMET RIYADI, FLORENTINUS BUDI SETIAWAN, LEONARDUS HERU PRATOMO

Sari


ABSTRAK

Dewasa ini teknologi energi terbarukan biasanya menggunakan mesin listrik sinkron Alternating Current (AC) pada pembangkit listrik tenaga angin. Generator listrik sinkron AC menggunakan brush pada proses eksitasi yang membutuhkan perawatan berkala sehingga rumit jika diaplikasikan pada Pembangkit Listrik Tenaga Angin. Pada penelitian ini generator akan menggunakan mesin Switched Reluctance yang dioperasikan sebagai Switched Reluctance Generator (SRG). Untuk menghasilkan keluaran arus yang optimal, SRG akan dioperasikan dengan mengatur sudut penyalaan fasa menggunakan metode single pulse. Metode pensakelaran ini diatur oleh input capture fasilitas mikrokontrol dsPIC 30F4012. Penelitian ini telah diverifikasi dengan simulasi Simulink MATLAB dan pengujian alat. Hasil pengujian optimal dibuktikan pada sudut penyalaan θon = 40 derajat dan θoff = 170 derajat menghasilkan arus discharging sebesar 7.6 A dengan kecepatan 1647.1 RPM ditandai dengan bentuk gelombang arus yang ideal. Hasil arus discharging yang optimal dapat meningkatkan kinerja SRG, sehingga metode ini dapat diaplikasikan pada pembangkit listrik tenaga angin.

Kata kunci: SRG, dsPIC30F4012, sudut penyalaan, single pulse

 

ABSTRACT

Nowadays, renewable energy technology usually uses AC synchronous electric machines in wind power. AC synchronous generator uses a brush in the excitation process, which requires periodic maintenance so it is complicated if applied to wind power. In this research, the generator will use a Switched Reluctance machine that operated as a SRG. To produce an optimal current, the SRG will be operated by adjusting the ignition angle using the single pulse method. This method is controlled by input capture of the microcontroller dsPIC 30F4012. This research has been verified by simulating Simulink MATLAB and testing device. The optimal test results are proven at the ignition angle θon = 40 degree and θoff = 170 degree produces a discharging current of 7.6 A with a speed of 1647.1 RPM characterized by the ideal current waveform. The optimal discharging current results can improve the performance of the SRG, so this method can be applied to wind power.

Keywords: SRG, dsPIC30F4012, the ignition angle, single pulse


Kata Kunci


SRG; dsPIC30F4012; sudut penyalaan; single pulse

Teks Lengkap:

PDF

Referensi


Ahmad, S., & Narayanan, G. (2020). Modeling of Single-Pulse Operated Switched Reluctance Generator and Its Verification. 10th International Conference on Power Electronics-ECCE Asia (pp. 4966-4976). Busan, Korea: IEEE Transactions on Industry Applications.

Barros, A., & Ruppert Filho, E. (2015). Direct Power Control for Switched Reluctance. Generator in Wind Energy. IntechOpen Journal Sciences, 13(1), 123-128.

Byun, S.-i., & Cho, Y.-h. (JANUARY 2014). A Study on the Maximum Power Control Method of Switched Reluctance Generator for Wind Turbine. IEEE TRANSACTIONS ON MAGNETICS, VOL. 50, NO. 1, 1-4.

Chirapo, K. A., Di Santo, S. G., Sguarezi, A., & Delgado, I. (2019). Direct power control of 12/8 Switched Reluctance Generator connected to single-phase electrical grid using the selftuning FUZZY PI Controller. Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019 (pp. 1-4). Brasil: Institute of Electrical and Electronics Engineers.

Dou, Y., Wang, Q., Chen, H., & Dongsheng, Y. (Desember 2016). High efficiency control of switched reluctance generator above base speed. IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). Trivandrum: Institute of Electrical and Electronics Engineers (IEEE).

Fernandes, N. (2018). Control of Switched Reluctance Generator Dissertation. University of Mumbai, Department of Electrical Engineering. Mumbai, India: Research Gate.

Freitas, M. A., Viajante, G. P., Andrade, G. A., Chaves, E. N., Queiroz, C. A., Silva, L. G., . . . Domingos, J. L. (2018). Comparative Analysis of The 6/4 and 8/6 Switched Reluctance Generator in Different Operating Conditions. INTERNATIONAL CONFERENCE ON RENEWABLE ENERGIES AND POWER QUALITY (ICREPQ'18). 10, pp. 487-492. SPAIN: The E&Q Journal by European Association for the Development of Renewable Energies, Enviroment and Power Quality.

Hajiabadi, Farshad, & Shamsinejad. (2020). Multi-Objective Optimization and Online Control of Switched Reluctance Generator for Wind Power Application. International Journal of Industrial Electronics Control and Optimization, 33 - 35.

Hrabovcová, V., Rafajdus, P., Lipták, M., & Szabó, L. (2013). Performances of converters suitable for switched reluctance generator (SRG) operation. Journal of Electrical Engineering, 64(4), 201-211.

Jayapragash, R., & Chellamuthu, C. (Januari 2017). Implementation of Wind Powered Switched Reluctance Generator System. International Journal of Renewable Energy Research, 7(3), 1019 - 1027.

Nasirian, V., Kaboli, S., & Davoudi, A. (2013). Output Power Maximization and Optimal Symmetric Freewheeling Excitation for Switched Reluctance Generators. SEMANTIC SCHOLAR, 49(3), 1031-1042.

Rasakannu, J., & Chinnagounder, C. (2016). Design and implementation of small power switched reluctance generator-based wind energy conversion system. Turkish Journal of Electrical Engineering and Computer Sciences, 24(4), 3228-3239.

Riyadi, S. (2019). Konverter Statis untuk Penggerak Motor Switched Reluctance Konverter Statis untuk Penggerak Motor Switched Reluctance. Semarang: Universitas Katolik Soegijapranata Semarang.

Wang, W., Chen, H., Wang, Q., Dou, Y., Yan, S., & Liu, Z. (2017). Control system of switched reluctance generator. 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (pp. 1064-1069). St. Petersburg: Institute of Electrical and Electronics Engineers.

Wijaya, V., & Riyadi, S. (2019). Implementation of Input Capture Method on Switched Reluctance Motor to Obtain Precise Commutation Signals. 2019 IEEE Conference on Energy Conversion (CENCON) (pp. 110-114). Yogyakarta, Indonesia: Institute of Electrical and Electronics Engineers.

Xu, Y. Z., Zhong, R., Chen, L., & Lu, S. L. (2012). Analytical method to optimise turn-on angle and turn-off angle for switched reluctance motor drives. IET Electric Power Applications, 16, 593-603.

Zhu, Z. Q., & Hu, J. (2012). Electrical machines and power- electronic systems for high-power wind energy generation applications : Part I - market penetration , current technology and advanced machine systems. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Article, 32(1), 1 - 29.




DOI: https://doi.org/10.26760/elkomika.v9i3.690

Refbacks

  • Saat ini tidak ada refbacks.


_______________________________________________________________________________________________________________________