Klasifikasi COVID-19 menggunakan Filter Gabor dan CNN dengan Hyperparameter Tuning
Sari
ABSTRAK
Penyakit COVID-19 dapat timbul karena berbagai faktor sebab dan akibat, sehingga penyakit ini memiliki efek buruk bagi penderita. Pencitraan CT-Scan memiliki keunggulan dalam memproyeksikan kondisi paru-paru pasien penderita, sehingga dapat membantu dalam mendeteksi tingkat keparahan penyakit. Dalam studi ini, penelitian dilakukan untuk mendeteksi penyakit COVID-19 melalui citra CT-Scan menggunakan metode Filter Gabor dan Convolutional Neural Networks (CNN) dengan Hyperparameter Tuning. Data yang digunakan yaitu citra CT-Scan SARSCoV-2 berjumlah 2481 gambar. Sebelum melatih model, dilakukan preprocessing data, seperti pelabelan, pengubahan ukuran, dan augmentasi gambar. Pengujian Model dilakukan dengan beberapa skenario uji. Hasil terbaik diperoleh pada skenario untuk model Filter Gabor dan CNN dengan Hyperparameter Tuning mendapatkan akurasi sebesar 97,9% dan AUC sebesar 99% dibandingkan dengan model tanpa Hyperparameter Tuning dan Filter Gabor.
Kata kunci: COVID-19, CNN, Filter Gabor, Hyperparameter Tuning, COVID-19 Classification
Â
ABSTRACT
COVID-19 disease can arise due to various causal and causal factors, so it has an adverse effect on patients. CT-Scan imaging has an advantage in projecting the lung condition of patients with the patient, so it can help in detecting the severity of the disease. In this study, research was conducted to detect COVID-19 disease through CT-Scan imagery using Gabor Filter method and Convolutional Neural Networks (CNN) with Hyperparameter Tuning. The data used is CT-Scan SARSCoV-2 imagery amounting to 2481 images. Before training the model, preprocessing data is performed, such as labeling, resizing, and augmentation of images. Model testing is performed with multiple test scenarios. The best results were obtained in scenarios for The Gabor Filter model and CNN with Hyperparameter Tuning getting 97.9% accuracy and AUC by 99% compared to models without Hyperparameter Tuning and Gabor Filter.
Keywords: COVID-19, CNN, Filter Gabor, Hyperparameter Tuning, COVID-19 Classification
Kata Kunci
Teks Lengkap:
PDFReferensi
Chen, Y., Zhu, L., Ghamisi, P., Jia, X., Li, G., & Tang, L. (2017). Hyperspectral Images Classification with Gabor Filtering and Convolutional Neural Network. IEEE Geoscience and Remote Sensing Letters, 14(12), 2355–2359. https://doi.org/10.1109/LGRS.2017.2764915
Dani, R., Sugiharto, A., & Winara, G. A. (2015). Aplikasi Pengolahan Citra Dalam Pengenalan Pola Huruf Ngalagena Menggunakan MATLAB. Konferensi Nasional Sistem & Informatika, (pp. 9–10).
El-Kenawy, E. S. M., Ibrahim, A., Mirjalili, S., Eid, M. M., & Hussein, S. E. (2020). Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3028012
Fan, D. P., Zhou, T., Ji, G. P., Zhou, Y., Chen, G., Fu, H., Shen, J., & Shao, L. (2020). Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images. IEEE Transactions on Medical Imaging, 39(8), 2626–2637. https://doi.org/10.1109/TMI.2020.2996645
Freni, F., Meduri, A., Gazia, F., Nicastro, V., Galletti, C., Aragona, P., Galletti, B., & Galletti, F. (2020). Symptomatology in head and neck district in coronavirus disease (COVID-19): A possible neuroinvasive action of SARS-CoV-2. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 41(5), 102612. https://doi.org/10.1016/j.amjoto.2020.102612
Hariyani, Y. S., Hadiyoso, S., & Siadari, T. S. (2020). Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 8(2), 443. https://doi.org/10.26760/elkomika.v8i2.443
Harvey, H. B., & Sotardi, S. T. (2018). The Pareto Principle. Journal of the American College of Radiology, 15(6), 931. https://doi.org/10.1016/j.jacr.2018.02.026
Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., & Kaur, M. (2020). Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. Journal of Biomolecular Structure and Dynamics, 1–8. https://doi.org/10.1080/07391102.2020.1788642
Loey, M., Manogaran, G., & Khalifa, N. E. M. (2020). A deep transfer learning model with classical data augmentation and CGAN to detect COVID-19 from chest CT radiography digital images. Neural Computing and Applications, 0123456789. https://doi.org/10.1007/s00521-020-05437-x
Lovse, L., Poitras, S., Dobransky, J., Huang, A., & Beaulé, P. E. (2019). Should the Pareto Principle Be Applied as a Cost Savings Method in Hip and Knee Arthroplasty? Journal of Arthroplasty, 34(12), 2841–2845. https://doi.org/10.1016/j.arth.2019.07.034
Polsinelli, M., Cinque, L., & Placidi, G. (2020). A light CNN for detecting COVID-19 from CT scans of the chest. Pattern Recognition Letters, 140, 95–100. https://doi.org/10.1016/j.patrec.2020.10.001
Sarwar, S. S., Panda, P., & Roy, K. (2017). Gabor filter assisted energy efficient fast learning convolutional neural networks. ArXiv.
Shi, F., Wang, J., Shi, J., Wu, Z., Wang, Q., Tang, Z., He, K., Shi, Y., & Shen, D. (2020). Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation and Diagnosis for COVID-19. IEEE Reviews in Biomedical Engineering, 3333(c), 1–13. https://doi.org/10.1109/RBME.2020.2987975
Silva, P., Luz, E., Silva, G., Moreira, G., Silva, R., Lucio, D., & Menotti, D. (2020). COVID-19 detection in CT images with deep learning: A voting-based scheme and cross-datasets analysis. Informatics in Medicine Unlocked, 20, 100427. https://doi.org/10.1016/j.imu.2020.100427
Singhal, T. (2020). A Review of Coronavirus Disease-2019 (COVID-19). Indian Journal of Pediatrics, 87(4), 281–286. https://doi.org/10.1007/s12098-020-03263-6
Soares, E., Angelov, P., Biaso, S., Higa Froes, M., & Kanda Abe, D. (2020). SARS-CoV-2 CTscan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification. 1–8. https://doi.org/10.1101/2020.04.24.20078584
Tripathi, A. M., & Mishra, A. (2020). Fuzzy Unique Image Transformation: Defense Against Adversarial Attacks On Deep COVID-19 Models. 14(8), 1–11. http://arxiv.org/abs/2009.04004
Ucar, F., & Korkmaz, D. (2020). COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Medical Hypotheses, 140(April), 109761. https://doi.org/10.1016/j.mehy.2020.109761
Wang, X., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., & Zheng, C. (2020). A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization from Chest CT. IEEE Transactions on Medical Imaging, 39(8), 2615–2625. https://doi.org/10.1109/TMI.2020.2995965
Wang, Z., Liu, Q., & Dou, Q. (2020). Contrastive Cross-Site Learning with Redesigned Net for COVID-19 CT Classification. IEEE Journal of Biomedical and Health Informatics, 24(10), 2806–2813. https://doi.org/10.1109/JBHI.2020.3023246
DOI: https://doi.org/10.26760/elkomika.v9i3.493
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.