Klasifikasi COVID-19 menggunakan Filter Gabor dan CNN dengan Hyperparameter Tuning

AGUS EKO MINARNO, MOCHAMMAD HAZMI COKRO MANDIRI, MUHAMMAD RIFAL ALFARIZY

Abstract


ABSTRAK

Penyakit COVID-19 dapat timbul karena berbagai faktor sebab dan akibat, sehingga penyakit ini memiliki efek buruk bagi penderita. Pencitraan CT-Scan memiliki keunggulan dalam memproyeksikan kondisi paru-paru pasien penderita, sehingga dapat membantu dalam mendeteksi tingkat keparahan penyakit. Dalam studi ini, penelitian dilakukan untuk mendeteksi penyakit COVID-19 melalui citra CT-Scan menggunakan metode Filter Gabor dan Convolutional Neural Networks (CNN) dengan Hyperparameter Tuning. Data yang digunakan yaitu citra CT-Scan SARSCoV-2 berjumlah 2481 gambar. Sebelum melatih model, dilakukan preprocessing data, seperti pelabelan, pengubahan ukuran, dan augmentasi gambar. Pengujian Model dilakukan dengan beberapa skenario uji. Hasil terbaik diperoleh pada skenario untuk model Filter Gabor dan CNN dengan Hyperparameter Tuning mendapatkan akurasi sebesar 97,9% dan AUC sebesar 99% dibandingkan dengan model tanpa Hyperparameter Tuning dan Filter Gabor.

Kata kunci: COVID-19, CNN, Filter Gabor, Hyperparameter Tuning, COVID-19 Classification

 

ABSTRACT

COVID-19 disease can arise due to various causal and causal factors, so it has an adverse effect on patients. CT-Scan imaging has an advantage in projecting the lung condition of patients with the patient, so it can help in detecting the severity of the disease. In this study, research was conducted to detect COVID-19 disease through CT-Scan imagery using Gabor Filter method and Convolutional Neural Networks (CNN) with Hyperparameter Tuning. The data used is CT-Scan SARSCoV-2 imagery amounting to 2481 images. Before training the model, preprocessing data is performed, such as labeling, resizing, and augmentation of images. Model testing is performed with multiple test scenarios. The best results were obtained in scenarios for The Gabor Filter model and CNN with Hyperparameter Tuning getting 97.9% accuracy and AUC by 99% compared to models without Hyperparameter Tuning and Gabor Filter.

Keywords: COVID-19, CNN, Filter Gabor, Hyperparameter Tuning, COVID-19 Classification


Keywords


COVID-19; CNN; Filter Gabor; Hyperparameter Tuning; COVID-19 Classification

References


Chen, Y., Zhu, L., Ghamisi, P., Jia, X., Li, G., & Tang, L. (2017). Hyperspectral Images Classification with Gabor Filtering and Convolutional Neural Network. IEEE Geoscience and Remote Sensing Letters, 14(12), 2355–2359. https://doi.org/10.1109/LGRS.2017.2764915

Dani, R., Sugiharto, A., & Winara, G. A. (2015). Aplikasi Pengolahan Citra Dalam Pengenalan Pola Huruf Ngalagena Menggunakan MATLAB. Konferensi Nasional Sistem & Informatika, (pp. 9–10).

El-Kenawy, E. S. M., Ibrahim, A., Mirjalili, S., Eid, M. M., & Hussein, S. E. (2020). Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3028012

Fan, D. P., Zhou, T., Ji, G. P., Zhou, Y., Chen, G., Fu, H., Shen, J., & Shao, L. (2020). Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images. IEEE Transactions on Medical Imaging, 39(8), 2626–2637. https://doi.org/10.1109/TMI.2020.2996645

Freni, F., Meduri, A., Gazia, F., Nicastro, V., Galletti, C., Aragona, P., Galletti, B., & Galletti, F. (2020). Symptomatology in head and neck district in coronavirus disease (COVID-19): A possible neuroinvasive action of SARS-CoV-2. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 41(5), 102612. https://doi.org/10.1016/j.amjoto.2020.102612

Hariyani, Y. S., Hadiyoso, S., & Siadari, T. S. (2020). Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 8(2), 443. https://doi.org/10.26760/elkomika.v8i2.443

Harvey, H. B., & Sotardi, S. T. (2018). The Pareto Principle. Journal of the American College of Radiology, 15(6), 931. https://doi.org/10.1016/j.jacr.2018.02.026

Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., & Kaur, M. (2020). Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. Journal of Biomolecular Structure and Dynamics, 1–8. https://doi.org/10.1080/07391102.2020.1788642

Loey, M., Manogaran, G., & Khalifa, N. E. M. (2020). A deep transfer learning model with classical data augmentation and CGAN to detect COVID-19 from chest CT radiography digital images. Neural Computing and Applications, 0123456789. https://doi.org/10.1007/s00521-020-05437-x

Lovse, L., Poitras, S., Dobransky, J., Huang, A., & Beaulé, P. E. (2019). Should the Pareto Principle Be Applied as a Cost Savings Method in Hip and Knee Arthroplasty? Journal of Arthroplasty, 34(12), 2841–2845. https://doi.org/10.1016/j.arth.2019.07.034

Polsinelli, M., Cinque, L., & Placidi, G. (2020). A light CNN for detecting COVID-19 from CT scans of the chest. Pattern Recognition Letters, 140, 95–100. https://doi.org/10.1016/j.patrec.2020.10.001

Sarwar, S. S., Panda, P., & Roy, K. (2017). Gabor filter assisted energy efficient fast learning convolutional neural networks. ArXiv.

Shi, F., Wang, J., Shi, J., Wu, Z., Wang, Q., Tang, Z., He, K., Shi, Y., & Shen, D. (2020). Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation and Diagnosis for COVID-19. IEEE Reviews in Biomedical Engineering, 3333(c), 1–13. https://doi.org/10.1109/RBME.2020.2987975

Silva, P., Luz, E., Silva, G., Moreira, G., Silva, R., Lucio, D., & Menotti, D. (2020). COVID-19 detection in CT images with deep learning: A voting-based scheme and cross-datasets analysis. Informatics in Medicine Unlocked, 20, 100427. https://doi.org/10.1016/j.imu.2020.100427

Singhal, T. (2020). A Review of Coronavirus Disease-2019 (COVID-19). Indian Journal of Pediatrics, 87(4), 281–286. https://doi.org/10.1007/s12098-020-03263-6

Soares, E., Angelov, P., Biaso, S., Higa Froes, M., & Kanda Abe, D. (2020). SARS-CoV-2 CTscan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification. 1–8. https://doi.org/10.1101/2020.04.24.20078584

Tripathi, A. M., & Mishra, A. (2020). Fuzzy Unique Image Transformation: Defense Against Adversarial Attacks On Deep COVID-19 Models. 14(8), 1–11. http://arxiv.org/abs/2009.04004

Ucar, F., & Korkmaz, D. (2020). COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Medical Hypotheses, 140(April), 109761. https://doi.org/10.1016/j.mehy.2020.109761

Wang, X., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., & Zheng, C. (2020). A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization from Chest CT. IEEE Transactions on Medical Imaging, 39(8), 2615–2625. https://doi.org/10.1109/TMI.2020.2995965

Wang, Z., Liu, Q., & Dou, Q. (2020). Contrastive Cross-Site Learning with Redesigned Net for COVID-19 CT Classification. IEEE Journal of Biomedical and Health Informatics, 24(10), 2806–2813. https://doi.org/10.1109/JBHI.2020.3023246




DOI: https://doi.org/10.26760/elkomika.v9i3.493

Refbacks

  • There are currently no refbacks.


_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License