Segmentation-Based Fractal Texture Analysis (SFTA) to Detect Mass in Mammogram Images

IRMA AMELIA DEWI, NUR FITRIANTI FAHRUDIN, JODI RAINA

Sari


ABSTRAK

Di Indonesia, kasus kanker paling banyak adalah kanker payudara yaitu 58.256 kasus atau 16,7% dari total 348.809 kasus kanker. Dibutuhkan suatu sistem yang dapat membantu pakar untuk mendeteksi kanker payudara pada wanita dengan mengindentifikasi citra mammogram. Keabnormalan dapat dideteksi dari massa pada mammogram yaitu area dengan pola tekstur dan bentuk serta batas tertentu. Berdasarkan hal tersebut maka dibuat sebuah sistem yang dapat mendeteksi massa kanker pada citra mammogram menggunakan Segmentation-Based Fractal Texture Analysis (SFTA). Tahapan pertama akuisisi citra, dilanjut dengan segmentasi menggunakan k-means dan thresholding. Hasil dari segmentasi citra dilakukan tahapan morfologi menggunakan opening dan masking. Setelah itu dilakukan ekstraksi fitur SFTA, dan klasifikasi Support Vector Machine (SVM). Hasil pengujian penelitian ini didapatkan nilai akurasi sebesar 90%, presisi sebesar 87,75%, recall sebesar 93,33%dan f1-score 90,32% dengan nilai number of threshold (nt) SFTA adalah 3

Kata kunci: mammogram, SFTA, kanker payudara, klasifikasi

 

ABSTRACT

In Indonesia, the most cancer cases were breast cancer, namely 58,256 cases or 16.7% of the total 348,809 cancer cases. A system is required to assist the expert in detecting breast cancer in women by identifying mammogram images. Abnormalities in a mammogram are determined in part of texture with a particular form and specific limit, usually called a ‘mass.’ Image acquisition is perceived as the first step, followed by segmentation using the k-means and the thresholding. Image segmentation undergoes the morphological analysis steps using opening and masking methods, after feature extraction processing by SFTA, using Support Vector Machine (SVM) for classification processing. The obtained research result revealed an accuracy value of 90%, a precision value of 87.75%, a recall value of 93.33%, and an F1-Score of 90.32%, with the number of thresholds (nt) of SFTA amounting to 3.

Keywords: Breast cancer, Mammogram, Classification, SFTA


Kata Kunci


Breast cancer; Mammogram; Classification; SFTA

Teks Lengkap:

PDF (English)

Referensi


Amalia, A. E., Airlangga, G., & Thohari, A. N. A. (2018). Breast Cancer Image Segmentation Using K-Means Clustering Based on GPU Cuda Parallel Computing. Jurnal Infotel, 10(1), 33–38. https://doi.org/10.20895/infotel.v10i1.344

Arafah, A. B. R., & Notobroto, H. B. (2017). Faktor Yang Berhubungan dengan Perilaku Ibu Rumah Tangga Melakukan Pemeriksaan Payudara Sendiri (Sadari). Ijph, 12, 143–153. https://doi.org/10.20473/ijph.v12i1.2017.143-153

Biswas, R., Nath, A., & Roy, S. (2016). Mammogram classification using gray-level cooccurrence matrix for diagnosis of breast cancer. Proceedings - 2016 International Conference on Micro-Electronics and Telecommunication Engineering, (pp. 161–166).

Costa, A. F., Humpire-Mamani, G., & Traina, A. J. M. H. (2012). An efficient algorithm for fractal analysis of textures. Brazilian Symposium of Computer Graphic and Image Processing, 39–46. https://doi.org/10.1109/SIBGRAPI.2012.15

El-henawy, I., Bakry, H. M. El, & Hadad, H. M. El. (2016). Cattle Identification Using Segmentation-based Fractal Texture Analysis and Artificial Neural Networks. Int. J. of Electronics and Information Engineering, 4(2), 82–93. https://doi.org/10.6636/IJEIE.201606.4(2).04

Ergen, B., & Baykara, M. (2014). Texture based feature extraction methods for content-based medical image retrieval systems. Bio-Medical Materials and Engineering, 24(6), 3055–3062. https://doi.org/10.3233/BME-141127

Fajrin, H. R., Nugroho, H. A., & Soesanti, I. (2015). Ekstraksi Ciri Berbasis Wavelet Dan Glcm Untuk Deteksi Dini Kanker Payudara Pada Citra Mammogram. Snst, 47–52.

Hariraj, V., Wan, K., Vikneswaran, & Zunaidi, I. (2017). An efficient data mining approaches for breast cancer detection and segmentation in mammogram. Journal of Advanced Research in Dynamical and Control Systems, 9(Special Issue 3), 185–194.

Junita, B. D. (2017). Ekstraksi Fitur dan Klasifikasi Menggunakan Metode GLCM dan SVM pada Citra Mammogram untuk identifikasi Kanker Payudara. 22(1), 18–26.

Larasati, B. A., & Prawira, A. (2018). Perbandingan Berbagai Teknologi untuk Mencari Dan Deteksi Kanker Payudara: Article Review. 16, 213–221.

Listia, R., Harjoko, A., Mada, U. G., & Utara, S. (2014). Klasifikasi Massa pada Citra Mammogram Berdasarkan Gray Level Cooccurence Matrix (GLCM). IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 8(1), 59–68. https://doi.org/10.22146/ijccs.3496

Luthfi, M., Amin, I. H. Al, & Cahyono, T. D. (2019). Penghalusan Kontur dan Tepi Obyek Citra Menggunakan Operasi Opening dan Closing. Proceeding SINTAK 2019, (pp. 352–360).

M, A. K., Edwin, D., Hariharan, S., & Student, M. T. (2017). Liver Tumor Segmentation and Feature Extraction using Segmentation based Fractal Textural Analysis Method (SFTA). International Journal of Advanced Scientific Technologies , Engineering and Management Sciences, (1), 169–172.

Nababan, E. B., Iqbal, M., & Rahmat, R. F. (2017). Breast cancer identification on digital mammogram using Evolving Connectionist Systems. 2016 International Conference on Informatics and Computing, (pp. 132–136).

Nur, I. M. (2014). Mammography Screening pada Kanker Payudara dengan Generalized Structured Component Analysis. Universitas Muhammadiyah Semarang, 2(1).

Öztürk, Ş., & Akdemir, B. (2018). Application of Feature Extraction and Classification Methods for Histopathological Image using GLCM, LBP, LBGLCM, GLRLM and SFTA. Procedia Computer Science, 132(Iccids), 40–46. https://doi.org/10.1016/j.procs.2018.05.057

Paramkusham, S., Rao, K. M. M., & Prabhakar Rao, B. V. V. S. N. (2018). Comparison of rotation invariant local frequency, LBP and SFTA methods for breast abnormality classification. International Journal of Signal and Imaging Systems Engineering, 11(3), 136–150. https://doi.org/10.1504/IJSISE.2018.093266

R. Suresh, A. N. Rao, dan B. E. Reddy. (2019). Detection and classification of normal and abnormal patterns in mammograms using deep neural network. Concurr. Comput., vol. 31, no. 14, hal. 1–12, 2019.

Setiawan, K. N., & Putra, I. S. (2018). Klasifikasi Citra Mammogram Menggunakan Metode. MERPATI VOL. 6, NO. 1, 13-24.

Shanmugavadivu, P., Krishnaveni, A., Sivakumar, V., & Narayanan, S. G. L. (2017). Digital Mammogram Segmentation and Feature Extraction : A Review. 9(12), 701–705.

Supriyanti, E. (2014). Perbandingan Ekstraksi Ciri Pada Data Mammogram Untuk Identifikasi Mikrokalsifikasi. SIMETRIS, 5(2), 153–160.

Usha, R., & Perumal, K. (2019). Morphological Transformation Based Fractal Texture Segmentation of MR Brain Tumour Image Slices. Ijaiem, 8(1), 1–7




DOI: https://doi.org/10.26760/elkomika.v9i1.203

Refbacks

  • Saat ini tidak ada refbacks.


_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License