Deteksi Radar Pasif menggunakan GNU Radio dan SDR pada Frekuensi Televisi

YONATAN EDWIN MARPAUNG, ALOYSIUS ADYA PRAMUDITA, ERFANSYAH ALI

Abstract


ABSTRAK

Radar pasif adalah salah satu jenis sistem radar bistatic dimana transmitter dan receiver berada di tempat berbeda. Sistem radar pasif dapat memaanfaatkan frekuensi siaran televisi yang tersedia sebagai sumber transmitter. Pada penelitian ini, radar pasif dibuat dengan Sofware Defined Radio (SDR) sebagai sistem komunikasi yang dapat mengkofigurasi penerima televisi digital sdr-dongle RTL2832U yang dimodifikasi dan perangkat lunak GNU Radio. Hasil pengujian delay pada gelombang 1,2,3 untuk objek manusia adalah 0,192, 0,36 dan 0,53 detik, untuk objek sepeda adalah 0,332, 0,5 dan 0,67, untuk objek motor adalah 0,422, 0,69 dan 0,86 detik, untuk objek mobil adalah 0,538, 0,7 dan 0,87 detik sehingga dapat disimpulkan bahwa sistem radar pasif yang dirancang dapat mendeteksi benda bergerak dimana pegerakan target menyebabkan pergeseran puncak Cross-Correlation.

Kata kunci: Radar Pasif, Cross-Correlation, SDR, Frekuensi Televisi, RTL2832U

 

ABSTRACT

Passive radar is a type of bistatic radar system where the transmitter and receiver are in different places. Passive radar systems can utilize the available television broadcast frequencies as transmitter sources. In this study, passive radar is made with Software Defined Radio (SDR) as a communication system that can configure a modified RTL2832U sdr-dongle digital television receiver and GNU Radio software. The delay test results on waves 1,2,3 for human objects are 0.192, 0.36 and 0.53 seconds, for bicycle objects are 0.332, 0.5 and 0.67, for motor objects are 0.422, 0.69 and 0.86 seconds, for car objects are 0.538, 0.7 and 0.87 seconds so it can be concluded that the passive radar system is designed to detect moving objects where moving targets causes a shift in the peak of Cross-Correlation.

Keywords: Passive Radar, Cross-Correlation, SDR, Television Frequency, RTL2832U


Keywords


Radar Pasif, Cross-Correlation, SDR, Frekuensi Televisi, RTL2832U

References


Anusha, S., Lahari, T. N., Bhavana, G. S. N., & Pradeep, H. S. (2017). GNU Radio based Real Time Data Transmission and Reception. International Research Journal of Engineering and Technology (IRJET), 4(7), 110-115.

Capria, A., Petri, D., Martorella, M., Conti, M., DalleMese, E., & Berizzi, F. (2010). DVB-T passive radar for vehicles detection in urban environment. IEEE International Geoscience and Remote Sensing Symposium (pp. 3917-3920). Honolulu, HI, USA: IEEE.

Feng, W., Cherniak, G., & Friedt, J. M. (2018). Software defined radio implementation of passive RADAR using low-cost DVB-T receiver. CNEAS. Sendai, Japan: Tohoku Univeristy.

Griffiths, H. (2014). Passive Bistatic Radar. University College London, London, UK: Elsevier Ltd.

Griffiths, H., & Baker, C. J. (2017). An Introduction to Passive Radar. London: Artech House.

Heunis, S., Paichard, Y., & Inggs, M. (2011). Passive radar using a sofware-defined radio platfrom and opensource software tools. IEEE RadarCon (RADAR) (pp. 879-884). Kansas City, MO, USA: IEEE.

Hosking, R. H. (2011). Software Defined Radio Handbook. New Jersey: Penetk, Inc.

Liu, J., Li, H., & Himed, B. (2015). Analysis of Cross-Correlation Detector for Passive Radar Applications. IEEE Radar Conference (RadarCon) Arlington, VA, USA: IEEE., (pp. 772-776).

Mello, R. G., Sousa, F. R., & junqueira, C. (2017). SDR-based radar-detectors embedded on tablet devices. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) Aguas de Lindoia, Brazil: IEEE, (pp. 1-5).

Patton, L. K. (2007). A GNU Radio Based Software Defined Radar. United States of America: Wrigth State Univeristy.

Proakis, J. G., & Manolakis, D. G. (2007). Digital Signal Processing, 4th ed. New Jersey: Pearson Prentice Hall.

Rahman, H. (2019). Fundamental Principles of Radar. United States of America: Taylor and Francis Group.

Saputera, Y. P., Herdiana, D., Madinawati, H., Suksmono, A. B., & Munir, A. (2015). Linear frequency modulated continuous wave radar using GNU radio and USRP. 1st International Conference on Wireless and Telematics (ICWT) Manado, Indonesia: IEEE, (pp. 1-6).

Skolnik, M. I. (1990). Radar Handbook. United States of America: McGraw-Hill.

Skolnik, M. I. (2002). Introduction to Radar System, 3rd ed. United States of America: McGraw-Hill.

Sowjanya, P., & Satyanarayana, P. (2019). Real-Time Data Transfer Based on Software Defined Radio Technique using Gnu radio/USRP. International Journal of Engineering and Advanced Technology (IJEAT), 9(1), 279-288.

Tuttlebee, W. H. (2002). Software Defined Radio. England: Mobile VCE, Wiley & Sons.

Willis, N. J. (2005). Bistatic Radar. United States of America: Scitech Publishing, inc.




DOI: https://doi.org/10.26760/elkomika.v8i3.505

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License