Perbandingan Ekstraksi Fitur dan Proses Matching pada Autentikasi Sidik Jari Manusia

ANGGUNMEKA LUHUR PRASASTI, BUDHI IRAWAN, SETIO EKA FAJRI, ANANDA RENDIKA, SUGONDO HADIYOSO

Abstract


ABSTRAK

Sidik jari merupakan biometrik yang sering digunakan dalam teknologi autentikasi. Terdapat banyak metode yang bisa digunakan untuk membuat sistem klasifikasi sidik jari. Maximum Curvature Points (MCP) umumnya digunakan untuk ekstraksi citra pembuluh darah jari yang juga digunakan sebagai autentikasi. Pada penelitian ini akan diuji performansi dari metode MCP jika dibandingkan dengan metode yang umum digunakan pada proses pengenalan sidik jari, yaitu Hit and Miss Transform (HMT). Perbedaan domain, yaitu spasial pada Normalized Cross Correlation (NCC) dan frekuensi pada Phase Correlation (PC) dalam proses matching ternyata juga mempengaruhi performansi sistem. Hasilnya menunjukkan bahwa penggunakaan metode MHTNCC memiliki tingkat akurasi yang lebih baik dalam pengenalan sidik jari yaitu 92% untuk pengenalan ibu jari dan 98% untuk pengenalan jari telunjuk, dibandingkan dengan menggunakan metode MCP-PC yang hanya memiliki tingkat akurasi sebesar 88% untuk pengenalan ibu jari dan 92% untuk pengenalan jari telunjuk.

Kata kunci: sidik jari, MCP, HMT, phase correlation, normalized cross correlation


ABSTRACT

Fingerprint is one of the biometric systems that are often used in an authentication technology. There are many methods that can be used to develop fingerprint’s classification system. Maximum Curvature Points (MCP) are generally used for finger vein image extraction which is also used as authentication. MCP performance will be compared to common method in finger print recognition, Hit and Miss Transform (HMT). Using different domains, spatial in Normalized Cross Correlation (NCC) and frequency in Phase Correlation (PC) affect the system performance. The results show that the application of HMT-NCC more accurate in terms of finger print’s recognition, 92% in accuracy for thumb recognition and 98% accuracy for index finger recognition, while MCP-PC is only reach 88% in accuracy for thumb recognition and 92% accuracy for index finger recognition.

Keywords: fingerprint, MCP, HMT, phase correlation, normalized cross correlation


Keywords


sidik jari; autentikasi; maximum curvature points; hit and miss transform; phase correlation; normalized cross correlation

References


Aziz, M. N., Purboyo, T. W., and Prasasti, A. L. (2017). A Survey on the Implementation of Image Enhancement. Int. J. Appl. Eng. Res., 12(21), 11451–11459.

Bansal, R., Sehgal, P., & Bedi, P. (2010). Effective Morphological Extraction of True Fingerprint Minutiae based on the Hit or Miss Transform. International Journal of Biometrics and Bioinformatics (IJBB), 4(2), 71–85.

Cui, J., Ra, M. S., & Kim, W. Y. (2014). Fingerprint pore matching method using polar histogram. Proceedings of the International Symposium on Consumer Electronics (ISCE), (pp. 1–2). https://doi.org/10.1109/ISCE.2014.6884381

Derman, E., & Keskinöz, M. (2016). Normalized cross-correlation based global distortion correction in fingerprint image matching. International Conference on Systems, Signals, and Image Processing, (pp. 1–4). https://doi.org/10.1109/IWSSIP.2016.7502727

Insankeovilay, S., Prasarn, P., Choomchuay, S. (2011). Fingerprint Matching with Cross Correlation and Minutiae Scores. IEEE Biomedical Engineering International Conference. https://doi.org/10.1109/BMEiCon.2012.6172045

Monika, & Kumar, M. (2014). A novel fingerprint minutiae matching using LBP. Proceedings - 3rd International Conference on Reliability, Infocom Technologies and Optimization: Trends and Future Directions, ICRITO 2014. https://doi.org/10.1109/ICRITO.2014.7014742

Prasasti, L. A., Mengko, W. K. R., Adiprawita, W. (2015). Vein Tracking Using 880nm Near Infrared and Sensor with Maximum Curvature Points Segmentation. International Federation for Medical and Biological Enginnering (IFMBE ), (pp. 206-209).

Putra, R.D., Purboyo, T.W., and Prasasti, L. A. (2017). A Review of Image Enhancement Methods. Int. J. Appl. Eng. Res ., 12 (23), 13596–13603.

Rong, L. C., Qing, H. M., & Li, J. (2011). Fingerprint composition-feature extraction using directional filter banks. Proceedings - 2011 7th International Conference on Computational Intelligence and Security, CIS 2011 , (pp. 550–554). https://doi.org/10.1109/CIS.2011.127

Shabrina, N., Isshiki, T., & Kunieda, H. (2016). Fingerprint Authentication on Touch Sensor using Phase-Only Correlation Method. International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), (pp. 1–5).

https://doi:10.1109/ictemsys.2016.7467127

Shinde, A. S., Bendre, V. (2015). An Embedded Fingerprint Authentication System. International Conference on Computing Communication Control and Automation, (pp. 205–208). https://doi.org/10.1109/ICCUBEA.2015.45

Tewari, K., & Kalakoti, R. L. (2014). Fingerprint recognition and feature extraction using transform domain techniques. IEEE International Conference on Advances in Communication and Computing Technologies, (pp. 1–5). https://doi.org/10.1109/EIC.2015.7230719

Tjandra, M., & Kistijantoro, I., A. (2018). Fingerprint Indexing based on Ridge Orientation and Frequency on GPU. International Conference on Advanced Computer Science and Information Systems (ICACSIS), (pp. 17–21).

Xu, Q., & Deng, J. I. E. (2016). Identity authentication system based on fingerprint identification and pulse certification. International Conference on Intelligent Networking and Collaborative Systems, (pp. 280-284). https://doi.org/10.1109/INCoS.2016.84

Yamada, S., & Endoh, T. (2012). Evaluation of Independence between Palm Vein and Fingerprint for Multimodal Biometrics. Proceedings of the International Conference of Biometrics Special Interest Group, (pp. 341-349).




DOI: https://doi.org/10.26760/elkomika.v8i1.95

Refbacks

  • There are currently no refbacks.


_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License