Compressive Sensing Audio Watermarking dengan Metode LWT dan QIM

IRMA SAFITRI, NUR IBRAHIM, HERLAMBANG YOGASWARA

Abstract


ABSTRAK

Penelitian ini mengembangkan teknik Compressive Sensing (CS) untuk audio watermarking dengan metode Lifting Wavelet Transform (LWT) dan Quantization Index Modulation (QIM). LWT adalah salah satu teknik mendekomposisi sinyal menjadi 2 sub-band, yaitu sub-band low dan high. QIM adalah suatu metode yang efisien secara komputasi atau perhitungan watermarking dengan menggunakan informasi tambahan. Audio watermarking dilakukan menggunakan file audio dengan format *.wav berdurasi 10 detik dan menggunakan 4 genre musik, yaitu pop, classic, rock, dan metal. Watermark yang disisipkan berupa citra hitam putih dengan format *.bmp yang masing-masing berukuran 32x32 dan 64x64 pixel. Pengujian dilakukan dengan mengukur nilai SNR, ODG, BER, dan PSNR. Audio yang telah disisipkan watermark, diuji ketahanannya dengan diberikan 7 macam serangan berupa LPF, BPF, HPF, MP3 compression, noise, dan echo. Penelitian ini memiliki hasil optimal dengan nilai SNR 85,32 dB, ODG -8,34x10-11, BER 0, dan PSNR ∞.

Kata kunci: Audio watermarking, QIM, LWT, Compressive Sensing.

 

ABSTRACT

This research developed Compressive Sensing (CS) technique for audio watermarking using Wavelet Transform (LWT) and Quantization Index Modulation (QIM) methods. LWT is one technique to decompose the signal into 2 sub-bands, namely sub-band low and high. QIM is a computationally efficient method or watermarking calculation using additional information. Audio watermarking was done using audio files with *.wav format duration of 10 seconds and used 4 genres of music, namely pop, classic, rock, and metal. Watermark was inserted in the form of black and white image with *.bmp format each measuring 32x32 and 64x64 pixels. The test was done by measuring the value of SNR, ODG, BER, and PSNR. Audio that had been inserted watermark was tested its durability with given 7 kinds of attacks such as LPF, BPF, HPF, MP3 Compression, Noise, and Echo. This research had optimal result with SNR value of 85.32 dB, ODG value of -8.34x10-11, BER value of 0, and PSNR value of ∞.

Keywords: Audio watermarking, QIM, LWT, Compressive Sensing.


Keywords


Audio Watermarking; QIM; LWT

References


Agradriya, B. A., Perdana, F. K., Safitri, I., & Novamizanti, L. (2017). Audio Watermarking Technique Based on Arnold Transform. International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System and Information Technology (ICACOMIT), (pp. 17-21).

Budiman, G., Suksmono, A. B., & Danudirdjo, D. (2016). Fibonacci Sequence Based FFT andDCT Performance Comparison in Audio Watermarking. Pertanika Journal of Science & Technology (JST), 24(1), 1-10.

Valens, C. (1999). The Fast Lifting Wavelet Transform. The Math Forum, (pp. 10-12).

Candes, E. J., & Wakin, M. B. (2008). An Introduction to Compressive Sampling. IEEE Signal Processing Magazine, pp. 21-30.

Jasmine, J. S., & Prabha, L. (2014). An Efficient Secure Image Watermarking using Wavelet Transform. International Journal of Computer Trends and Technology (IJCTT), 17(3), 133-137.

Bash, A. A., & Kayhan, S. K. (2015). Watermarked Compressive Sensing Measurement Reconstructed by the Greedy Algorithms. International Journal of Computer Theory and Engineering, 7(3), 219-222.

Neetha, K. K., & Aneesh, M. K. (2015). A Compressive Sensing Approach to DCT Watermarking System. International Conference on Control, Communication & Computing India (ICCC), (pp. 495-500).

Dhar, P. K., Khan, M. I., & Kim, J. (2010). A New Audio Watermarking System using Discrete Fourier Transform for Copyright Protection. International Journal of Computer Science and Network Security, 10(6), 35-40.

Lei, B., Soon, I. Y., Zhou, F., Li, Z., & Lei, H. (2012). A Robust Audio Watermarking Scheme based on Lifting Wavelet Transform and Singular Value Decomposition. Signal Processing, 92(9), 1985-2001.

Li, Q., & Cox, I. J. (2007). Using Perceptual Models to Improve Fidelity and Provide Resistance to Valumetric Scaling for Quantization Index Modulation Watermarking. IEEE Transaction of Information Forensics and Security, 2(2), 127-139.

Vujović, S., Daković, M., & Stanković, L. (2014). Comparison of the L1-Magic and the Gradient Algorithm for Sparse Signal Reconstruction. 22nd Telecommunications Forum TELFOR 2014 (pp. 577-580). IEEE.

Safitri, I., Ginanjar, R. R., Rizal, A., & Azizah. (2017). Adaptive Multilevel Wavelet BCH Code Method in the Audio Watermarking System. International Conference on Controls, Electronics, Renewable Energy and Communications (ICCEREC), (pp. 55-59).

Lalitha, N. V., Prasad, P. V., & Rao, S. U. (2016). Performance Analysis of DCT and DWT Audio Watermarking based on SVD. International Conference on Circuit, Power and Computing Technologies (ICCPCT), (pp. 1-5).




DOI: https://doi.org/10.26760/elkomika.v6i3.405

Refbacks

  • There are currently no refbacks.


_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License