Optimization System on Photoplethysmography (PPG) Signal using Analog and Digital Filters

M. RIVALDI ALI SEPTIAN, SUKSMANDHIRA HARIMURTI, WAHMISARI PRIHARTI, ISWAHYUDI HIDAYAT, MOHAMAD RAMDHANI

Abstract


Photoplethysmography (PPG) adalah teknik non-invasif untuk memantau denyut jantung dan saturasi oksigen, namun rentan terhadap noise. Penelitian ini bertujuan mengoptimalkan kualitas sinyal PPG melalui desain dan implementasi sistem filter analog dan digital. Sistem terdiri dari sensor pulse dan Arduino Uno untuk akuisisi data, diikuti oleh rangkaian filter analog dan filter digital. Variasi nilai resistor gain dan kapasitor pada low pass filter rangkaian analog dianalisis untuk mendapatkan kinerja hasil terbaik. Hasil pengujian menunjukkan bahwa kombinasi filter analog dan digital berhasil meningkatkan Signal-to-Noise Ratio (SNR) dari 4.61 dB menjadi 19.57 dB. Denyut jantung dari sinyal yang telah dioptimasi mencapai 61.60 BPM yang di validasi dengan peak detection yang mampu mendeteksi peak dengan benar. selain itu, Baseline Wander Index (BWI) sebesar 0.18. Hasil penelitian membuktikan bahwa sistem optimasi menghasilkan sinyal PPG yang bersih dan akurat untuk aplikasi monitoring kesehatan

Keywords


Photoplethysmography; Filter Analog; Digital Filter; SNR.

Full Text:

PDF

References


Addison, P. S. (2017). The illustrated wavelet transform handbook: Introductory theory and applications in science, engineering, medicine and finance (2nd ed.). CRC Press.

Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. In Physiological Measurement, 28(3), 1 – 39.

Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, c, & Nazeran, H. (2018). A review on wearable photoplethysmography sensors and their potential future applications in health care. International Journal of Biosensors & Bioelectronics, 4(4), 1 – 19.

Chen, S., Wong, K. L., Chin, J. W., Chan, T. T., & So, R. H. Y. (2024). DiffPhys: Enhancing Signal-to-Noise Ratio in Remote Photoplethysmography Signal Using a Diffusion Model Approach. Bioengineering, 11(8), 1 – 16.

Choi, C., & Lee, J. W. (2022). An 11.8-fJ/Conversion-Step Noise Shaping SAR ADC with Embedded Passive Gain for Energy-Efficient IoT Sensors. Sensors, 22(3), 1 - 17.

Elgendi, M. (2012). On the Analysis of Fingertip Photoplethysmogram Signals. In Current Cardiology Reviews, 8, 14 – 25.

Girish H. (2022). Internet of Things Based Heart Beat Rate Monitoring System. International Journal Of Innovative Research In Technology, 2(4), 227 –231.

Jamil, S., & Rahman, M. (2022). A Novel Deep-Learning-Based Framework for the Classification of Cardiac Arrhythmia. Journal of Imaging, 8(3), 1 – 14.

Karlen, W., Raman, S., Ansermino, J. M., & Dumont, G. A. (2013). Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Transactions on Biomedical Engineering, 60(7), 1946 – 1953.

Kashif, M., Fahmi, M., Hariyani, D. A., Rahmatilah, A., Ain, K., Susilo, Y., Syahrom, A., & Astuti, S. D. (2022). An improved Kalman Filter in Photoplethysmography DC Component Denoising for cardiorespiratory analysis. Rawal Medical Journal, 47(3), 743 – 747.

Liang, Y., Elgendi, M., Chen, Z., & Ward, R. (2018). Analysis: An optimal filter for short photoplethysmogram signals. Scientific Data, 5, 1 – 12.

Luo, Y., Hargraves, R. H., Belle, A., Bai, O., Qi, X., Ward, K. R., Pfaffenberger, M. P., & Najarian, K. (2013). A hierarchical method for removal of baseline drift from biomedical signals: Application in ECG analysis. The Scientific World Journal, 2013, 1 – 10.

Millasseau, S. C., Ritter, J. M., Takazawa, K., & Chowienczyk, P. J. (2006). Contour analysis of the photoplethysmographic pulse measured at the finger. Journal of Hypertension, 24(8), 1449 - 1456.

Nashichah, R., Trisakti Wahyuningtya, D., & Kesehatan Kementerian Kesehatan Surabaya, P. (2025). Improving Photoplethysmograph Signal Quality using Butterworth Filters: Denoising and SNR Evaluation Analysis. Medika Teknika : Jurnal Teknik Elektromedik Indonesia, 7(1), 148 – 156.

Oppenheim, A. V, Schafer, R. W., & Buck, J. R. (1999). Discrete-time signal processing (2nd ed.). Prentice Hall.

Peng, F., Zhang, Z., Gou, X., Liu, H., & Wang, W. (2014). Motion artifact removal from photoplethysmographic signals by combining temporally constrained independent component analysis and adaptive filter. BioMedical Engineering Online, 13(1), 1 - 14.

Ram, M. R., Madhav, K. V., Krishna, E. H., Komalla, N. R., & Reddy, K. A. (2012). A novel approach for motion artifact reduction in PPG signals based on AS-LMS adaptive filter. IEEE Transactions on Instrumentation and Measurement, 61(5), 1445 – 1457.

Reisner, A., Shaltis, P. A., Mccombie, D., Asada, H. H., Warner, D. S., & Warner, M. A. (2008). Utility of the Photoplethysmogram in Circulatory Monitoring. www.anesthesiology.org.

Sallen, R. P., & Keyt, E. L. (1955). A Practical Method of Designing RC Active Filters*. Ire Transactions Circuit Theory, 2(1), 74 – 85.

Schäfer, A., & Vagedes, J. (2013). How accurate is pulse rate variability as an estimate of heart rate variability?: A review on studies comparing photoplethysmographic technology with an electrocardiogram. In International Journal of Cardiology, 166(1), 15 – 29.

Tamura, T., Maeda, Y., Sekine, M., & Yoshida, M. (2014). Wearable photoplethysmographic sensors—past and present. In Electronics, 3(2), 282 – 302.

Thakur, S., Chao, P. C. P., & Tsai, C. H. (2023). Precision Heart Rate Estimation Using a PPG Sensor Patch Equipped with New Algorithms of Pre-Quality Checking and Hankel Decomposition. Sensors, 23(13), 1 – 16.

Webster, J. G. (2009). Medical instrumentation: application and design (4th ed.). John Wiley & Sons.

Zhang, Z., Pi, Z., & Liu, B. (2015). TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Transactions on Biomedical Engineering, 62(2), 522–531.




DOI: https://doi.org/10.26760/elkomika.v14i1.121

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License