Optimization System on Photoplethysmography (PPG) Signal using Analog and Digital Filters
Abstract
Keywords
Full Text:
PDFReferences
Addison, P. S. (2017). The illustrated wavelet transform handbook: Introductory theory and applications in science, engineering, medicine and finance (2nd ed.). CRC Press.
Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. In Physiological Measurement, 28(3), 1 – 39.
Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, c, & Nazeran, H. (2018). A review on wearable photoplethysmography sensors and their potential future applications in health care. International Journal of Biosensors & Bioelectronics, 4(4), 1 – 19.
Chen, S., Wong, K. L., Chin, J. W., Chan, T. T., & So, R. H. Y. (2024). DiffPhys: Enhancing Signal-to-Noise Ratio in Remote Photoplethysmography Signal Using a Diffusion Model Approach. Bioengineering, 11(8), 1 – 16.
Choi, C., & Lee, J. W. (2022). An 11.8-fJ/Conversion-Step Noise Shaping SAR ADC with Embedded Passive Gain for Energy-Efficient IoT Sensors. Sensors, 22(3), 1 - 17.
Elgendi, M. (2012). On the Analysis of Fingertip Photoplethysmogram Signals. In Current Cardiology Reviews, 8, 14 – 25.
Girish H. (2022). Internet of Things Based Heart Beat Rate Monitoring System. International Journal Of Innovative Research In Technology, 2(4), 227 –231.
Jamil, S., & Rahman, M. (2022). A Novel Deep-Learning-Based Framework for the Classification of Cardiac Arrhythmia. Journal of Imaging, 8(3), 1 – 14.
Karlen, W., Raman, S., Ansermino, J. M., & Dumont, G. A. (2013). Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Transactions on Biomedical Engineering, 60(7), 1946 – 1953.
Kashif, M., Fahmi, M., Hariyani, D. A., Rahmatilah, A., Ain, K., Susilo, Y., Syahrom, A., & Astuti, S. D. (2022). An improved Kalman Filter in Photoplethysmography DC Component Denoising for cardiorespiratory analysis. Rawal Medical Journal, 47(3), 743 – 747.
Liang, Y., Elgendi, M., Chen, Z., & Ward, R. (2018). Analysis: An optimal filter for short photoplethysmogram signals. Scientific Data, 5, 1 – 12.
Luo, Y., Hargraves, R. H., Belle, A., Bai, O., Qi, X., Ward, K. R., Pfaffenberger, M. P., & Najarian, K. (2013). A hierarchical method for removal of baseline drift from biomedical signals: Application in ECG analysis. The Scientific World Journal, 2013, 1 – 10.
Millasseau, S. C., Ritter, J. M., Takazawa, K., & Chowienczyk, P. J. (2006). Contour analysis of the photoplethysmographic pulse measured at the finger. Journal of Hypertension, 24(8), 1449 - 1456.
Nashichah, R., Trisakti Wahyuningtya, D., & Kesehatan Kementerian Kesehatan Surabaya, P. (2025). Improving Photoplethysmograph Signal Quality using Butterworth Filters: Denoising and SNR Evaluation Analysis. Medika Teknika : Jurnal Teknik Elektromedik Indonesia, 7(1), 148 – 156.
Oppenheim, A. V, Schafer, R. W., & Buck, J. R. (1999). Discrete-time signal processing (2nd ed.). Prentice Hall.
Peng, F., Zhang, Z., Gou, X., Liu, H., & Wang, W. (2014). Motion artifact removal from photoplethysmographic signals by combining temporally constrained independent component analysis and adaptive filter. BioMedical Engineering Online, 13(1), 1 - 14.
Ram, M. R., Madhav, K. V., Krishna, E. H., Komalla, N. R., & Reddy, K. A. (2012). A novel approach for motion artifact reduction in PPG signals based on AS-LMS adaptive filter. IEEE Transactions on Instrumentation and Measurement, 61(5), 1445 – 1457.
Reisner, A., Shaltis, P. A., Mccombie, D., Asada, H. H., Warner, D. S., & Warner, M. A. (2008). Utility of the Photoplethysmogram in Circulatory Monitoring. www.anesthesiology.org.
Sallen, R. P., & Keyt, E. L. (1955). A Practical Method of Designing RC Active Filters*. Ire Transactions Circuit Theory, 2(1), 74 – 85.
Schäfer, A., & Vagedes, J. (2013). How accurate is pulse rate variability as an estimate of heart rate variability?: A review on studies comparing photoplethysmographic technology with an electrocardiogram. In International Journal of Cardiology, 166(1), 15 – 29.
Tamura, T., Maeda, Y., Sekine, M., & Yoshida, M. (2014). Wearable photoplethysmographic sensors—past and present. In Electronics, 3(2), 282 – 302.
Thakur, S., Chao, P. C. P., & Tsai, C. H. (2023). Precision Heart Rate Estimation Using a PPG Sensor Patch Equipped with New Algorithms of Pre-Quality Checking and Hankel Decomposition. Sensors, 23(13), 1 – 16.
Webster, J. G. (2009). Medical instrumentation: application and design (4th ed.). John Wiley & Sons.
Zhang, Z., Pi, Z., & Liu, B. (2015). TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Transactions on Biomedical Engineering, 62(2), 522–531.
DOI: https://doi.org/10.26760/elkomika.v14i1.121
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id






________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

