Hybrid Particle Swarm Optimization–Simulated Annealing OPF for Lombok Generation Cost Reduction
Abstract
Keywords
Full Text:
PDFReferences
Algarni, S., Tirth, V., Alqahtani, T., Alshehery, S., & Kshirsagar, P. (2023). Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development. Sustainable Energy Technologies and Assessments, 56, 103098. https://doi.org/10.1016/j.seta.2023.103098
Ali, A., Hassan, A., Keerio, M. U., Mugheri, N. H., Abbas, G., Hatatah, M., Touti, E., & Yousef, A. (2024). A novel solution to optimal power flow problems using composite differential evolution integrating effective constrained handling techniques. Scientific Reports, 14(1), 6187. https://doi.org/10.1038/s41598-024-56590-5
Alkhamis, A. K., & Hosny, M. (2023). A Multi-Objective Simulated Annealing Local Search Algorithm in Memetic CENSGA: Application to Vaccination Allocation for Influenza. Sustainability, 15(21), 15347. https://doi.org/10.3390/su152115347
Barman, P., Dutta, L., Bordoloi, S., Kalita, A., Buragohain, P., Bharali, S., & Azzopardi, B. (2023). Renewable energy integration with electric vehicle technology: A review of the existing smart charging approaches. Renewable and Sustainable Energy Reviews, 183(113518), 113518. https://doi.org/10.1016/j.rser.2023.113518
Biswas, P. P., Suganthan, P. N., Mallipeddi, R., & Amaratunga, G. A. J. (2020). Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms. Soft Computing, 24(4), 2999–3023. https://doi.org/10.1007/s00500-019-04077-1
Cuevas, E., Rosas Caro, J.C., Alejo Reyes, A., González Ayala, P., Rodriguez, A. (2025). The Simulated Annealing Method. In: Optimization in Industrial Engineering. Synthesis Lectures on Engineering, Science, and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-74027-5_8
Ebeed, M., Kamel, S., & Jurado, F. (2018). Optimal Power Flow Using Recent Optimization Techniques. In Classical and Recent Aspects of Power System Optimization (pp. 157–183). Elsevier. https://doi.org/10.1016/B978-0-12-812441-3.00007-0
Fahim, K. E., Silva, L. C. D., Hussain, F., & Yassin, H. (2023). A State-of-the-Art Review on Optimization Methods and Techniques for Economic Load Dispatch with Photovoltaic Systems: Progress, Challenges, and Recommendations. Sustainability, 15(15), 11837. https://doi.org/10.3390/su151511837
Fan, F., Kockar, I., Xu, H., & Li, J. (2022). Scheduling Framework Using Dynamic Optimal Power Flow for Battery Energy Storage Systems. CSEE Journal of Power and Energy Systems, 8(1), 271–280. https://doi.org/10.17775/CSEEJPES.2020.03710
Freitas, D., Lopes, L. G., & Morgado-Dias, F. (2020). Particle Swarm Optimisation: A Historical Review Up to the Current Developments. Entropy, 22(3), 362. https://doi.org/10.3390/e22030362
Gad, A. G. (2022). Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Archives of Computational Methods in Engineering, 29(5), 2531–2561. https://doi.org/10.1007/s11831-021-09694-4
Gopinath, G. S. S., & Meher, M. V. K. (2018). Electricity a basic need for the human beings. AIP Conference Proceedings. https://doi.org/10.1063/1.5047989
Li, C., Kies, A., Zhou, K., Schlott, M., Sayed, O. El, Bilousova, M., & Stöcker, H. (2024). Optimal Power Flow in a highly renewable power system based on attention neural networks. Applied Energy, 359, 122779. https://doi.org/10.1016/j.apenergy.2024.122779
Ma, R., Li, X., Luo, Y., Wu, X., & Jiang, F. (2019). Multi-objective dynamic optimal power flow of wind integrated power systems considering demand response. CSEE Journal of Power and Energy Systems. https://doi.org/10.17775/CSEEJPES.2017.00280
Marzbani, F., & Abdelfatah, A. (2024). Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review. Energies, 17(3), 550. https://doi.org/10.3390/en17030550
Mubarak, H., Muhammad, M. A., Mansor, N. N., Mokhlis, H., Ahmad, S., Ahmed, T., & Sufyan, M. (2022). Operational Cost Minimization of Electrical Distribution Network during Switching for Sustainable Operation. Sustainability, 14(7), 4196. https://doi.org/10.3390/su14074196
Silva, B. N., Khan, M., & Han, K. (2020). Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities. Sustainability, 12(14), 5561. https://doi.org/10.3390/su12145561
Sultan, H. M., Zaki Diab, A. A., Menesy, A. S., Kassas, M., Alqahtani, M., Khalid, M., & Abdul-Ghaffar, H. I. (2025). Enhancing optimal power flow in power systems: A comparative analysis of recent metaheuristic optimization techniques. Energy Reports, 13, 3957–3999. https://doi.org/10.1016/j.egyr.2025.03.031
Suman, B., & Kumar, P. (2006). A survey of simulated annealing as a tool for single and multiobjective optimization. Journal of the Operational Research Society, 57(10), 1143–1160. https://doi.org/10.1057/palgrave.jors.2602068
Wang, C., Yu, F., Cao, Q. et al. A novel swarm intelligence optimization method for efficient task allocation in industrial wireless sensor networks. Sci Rep 15, 35530 (2025). https://doi.org/10.1038/s41598-025-19527-0
Yang, C., Sun, Y., Zou, Y., Zheng, F., Liu, S., Zhao, B., Wu, M., & Cui, H. (2023). Optimal Power Flow in Distribution Network: A Review on Problem Formulation and Optimization Methods. Energies, 16(16), 5974. https://doi.org/10.3390/en16165974
Yao, J., Luo, X., Li, F. et al. (2024). Research on hybrid strategy Particle Swarm Optimization algorithm and its applications. Sci Rep 14, 24928. https://doi.org/10.1038/s41598-024-76010-y
DOI: https://doi.org/10.26760/elkomika.v13i4.409
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id






________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.
