Hybrid Particle Swarm Optimization–Simulated Annealing OPF for Lombok Generation Cost Reduction

MUHAMMAD RIVALDI HARJIAN, AGUNG BUDI MULJONO, AKBAR TAWAQQAL, RAJA RESKI EKA PUTRA

Abstract


This study proposes the application of Optimal Power Flow (OPF) in the Lombok Electricity System consisting of 19 buses and 7 generating units, with the main objective of reducing production costs under peak load conditions. The method used is a hybrid optimization method that combines two methods, namely the Particle Swarm Optimization and Simulated Annealing algorithms. Particle Swarm Optimization and Simulated Annealing (PSO–SA) method. Combining PSO and SA algorithms can improve the weaknesses of PSO with its jumping feature. In other words, the use of the PSO-SA algorithm is more effective than the PSO method. The simulation results show a generation cost of USD 31,158. The total generated power is 193,736 MW, which is equivalent to a total load of 193.34 MW. In addition, the voltage profile of all buses is at 0.95–1.05 pu and the power flow of all lines is below the thermal capacity. This finding confirms that the use of the PSO–SA algorithm effectively reduces operating costs without violating the system's operating constraints.

Keywords


Lombok Power System; OPF; Power Flow; PSO-SA

Full Text:

PDF

References


Algarni, S., Tirth, V., Alqahtani, T., Alshehery, S., & Kshirsagar, P. (2023). Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development. Sustainable Energy Technologies and Assessments, 56, 103098. https://doi.org/10.1016/j.seta.2023.103098

Ali, A., Hassan, A., Keerio, M. U., Mugheri, N. H., Abbas, G., Hatatah, M., Touti, E., & Yousef, A. (2024). A novel solution to optimal power flow problems using composite differential evolution integrating effective constrained handling techniques. Scientific Reports, 14(1), 6187. https://doi.org/10.1038/s41598-024-56590-5

Alkhamis, A. K., & Hosny, M. (2023). A Multi-Objective Simulated Annealing Local Search Algorithm in Memetic CENSGA: Application to Vaccination Allocation for Influenza. Sustainability, 15(21), 15347. https://doi.org/10.3390/su152115347

Barman, P., Dutta, L., Bordoloi, S., Kalita, A., Buragohain, P., Bharali, S., & Azzopardi, B. (2023). Renewable energy integration with electric vehicle technology: A review of the existing smart charging approaches. Renewable and Sustainable Energy Reviews, 183(113518), 113518. https://doi.org/10.1016/j.rser.2023.113518

Biswas, P. P., Suganthan, P. N., Mallipeddi, R., & Amaratunga, G. A. J. (2020). Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms. Soft Computing, 24(4), 2999–3023. https://doi.org/10.1007/s00500-019-04077-1

Cuevas, E., Rosas Caro, J.C., Alejo Reyes, A., González Ayala, P., Rodriguez, A. (2025). The Simulated Annealing Method. In: Optimization in Industrial Engineering. Synthesis Lectures on Engineering, Science, and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-74027-5_8

Ebeed, M., Kamel, S., & Jurado, F. (2018). Optimal Power Flow Using Recent Optimization Techniques. In Classical and Recent Aspects of Power System Optimization (pp. 157–183). Elsevier. https://doi.org/10.1016/B978-0-12-812441-3.00007-0

Fahim, K. E., Silva, L. C. D., Hussain, F., & Yassin, H. (2023). A State-of-the-Art Review on Optimization Methods and Techniques for Economic Load Dispatch with Photovoltaic Systems: Progress, Challenges, and Recommendations. Sustainability, 15(15), 11837. https://doi.org/10.3390/su151511837

Fan, F., Kockar, I., Xu, H., & Li, J. (2022). Scheduling Framework Using Dynamic Optimal Power Flow for Battery Energy Storage Systems. CSEE Journal of Power and Energy Systems, 8(1), 271–280. https://doi.org/10.17775/CSEEJPES.2020.03710

Freitas, D., Lopes, L. G., & Morgado-Dias, F. (2020). Particle Swarm Optimisation: A Historical Review Up to the Current Developments. Entropy, 22(3), 362. https://doi.org/10.3390/e22030362

Gad, A. G. (2022). Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Archives of Computational Methods in Engineering, 29(5), 2531–2561. https://doi.org/10.1007/s11831-021-09694-4

Gopinath, G. S. S., & Meher, M. V. K. (2018). Electricity a basic need for the human beings. AIP Conference Proceedings. https://doi.org/10.1063/1.5047989

Li, C., Kies, A., Zhou, K., Schlott, M., Sayed, O. El, Bilousova, M., & Stöcker, H. (2024). Optimal Power Flow in a highly renewable power system based on attention neural networks. Applied Energy, 359, 122779. https://doi.org/10.1016/j.apenergy.2024.122779

Ma, R., Li, X., Luo, Y., Wu, X., & Jiang, F. (2019). Multi-objective dynamic optimal power flow of wind integrated power systems considering demand response. CSEE Journal of Power and Energy Systems. https://doi.org/10.17775/CSEEJPES.2017.00280

Marzbani, F., & Abdelfatah, A. (2024). Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review. Energies, 17(3), 550. https://doi.org/10.3390/en17030550

Mubarak, H., Muhammad, M. A., Mansor, N. N., Mokhlis, H., Ahmad, S., Ahmed, T., & Sufyan, M. (2022). Operational Cost Minimization of Electrical Distribution Network during Switching for Sustainable Operation. Sustainability, 14(7), 4196. https://doi.org/10.3390/su14074196

Silva, B. N., Khan, M., & Han, K. (2020). Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities. Sustainability, 12(14), 5561. https://doi.org/10.3390/su12145561

Sultan, H. M., Zaki Diab, A. A., Menesy, A. S., Kassas, M., Alqahtani, M., Khalid, M., & Abdul-Ghaffar, H. I. (2025). Enhancing optimal power flow in power systems: A comparative analysis of recent metaheuristic optimization techniques. Energy Reports, 13, 3957–3999. https://doi.org/10.1016/j.egyr.2025.03.031

Suman, B., & Kumar, P. (2006). A survey of simulated annealing as a tool for single and multiobjective optimization. Journal of the Operational Research Society, 57(10), 1143–1160. https://doi.org/10.1057/palgrave.jors.2602068

Wang, C., Yu, F., Cao, Q. et al. A novel swarm intelligence optimization method for efficient task allocation in industrial wireless sensor networks. Sci Rep 15, 35530 (2025). https://doi.org/10.1038/s41598-025-19527-0

Yang, C., Sun, Y., Zou, Y., Zheng, F., Liu, S., Zhao, B., Wu, M., & Cui, H. (2023). Optimal Power Flow in Distribution Network: A Review on Problem Formulation and Optimization Methods. Energies, 16(16), 5974. https://doi.org/10.3390/en16165974

Yao, J., Luo, X., Li, F. et al. (2024). Research on hybrid strategy Particle Swarm Optimization algorithm and its applications. Sci Rep 14, 24928. https://doi.org/10.1038/s41598-024-76010-y




DOI: https://doi.org/10.26760/elkomika.v13i4.409

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License