Identification of Sugarcane Fields and Classification of Their Growth Stages using Random Forest on Google Earth Engine

DEWI KANIA SARI, MUHAMMAD SAPUTRA NOVAL

Abstract


Remote sensing technology, particularly Sentinel-2 imagery, offers an efficient and large-scale solution for monitoring sugarcane crop growth phases. This study aims to identify sugarcane fields and classify their growth phases in Jatitujuh District, Majalengka Regency, using the Random Forest algorithm on the Google Earth Engine (GEE) platform. Three vegetation indices—NDVI, NDRE, and CIRE—were used as input variables in the classification process. The results indicate that the stem elongation phase is the most dominant, followed by the maturation, fallow, and sprouting phases. The developed classification model achieved an overall accuracy of 80%, with a Kappa coefficient of 65% and an F1-Score of 68%. This study is expected to contribute to the optimization of sugarcane production in Indonesia and serve as a reference for more effective land management and planning.


Keywords


growth phase; sugarcane; Sentinel-2; random forest; GEE

Full Text:

PDF

References


Basheer, S., Wang, X., Farooque, A. A., Nawaz, R. A., Liu, K., Adekanmbi, T., & Liu, S. (2022). Comparison of land use land cover classifiers using different satellite imagery and machine learning techniques. Remote Sensing, 14(19), 1–18. https://doi.org/10.3390/ rs14194978

Bramdito, V. C., Wijaya, S. H., & Sitanggang, I. S. (2023). Model klasifikasi fase pertumbuhan tebu dari citra Sentinel-1 multi-temporal menggunakan algoritma random forest. Jurnal Ilmu Komputer dan Agri-Informatika, 10(2), 212–223.

Belgiu, M., & Dragu, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Coops, N. C., & Stone, C. A. (2005). A comparison of field-based and modelled reflectance spectra from damaged Pinus radiata foliage. Australian Journal of Botany, 53(5), 417–429.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., & Martimort, P. (2012). Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026

Farikhi, F. A., & Pramono, R. W. D. (2023). Perbandingan algoritma classification and regression tree (CART) dan random forest (RF) untuk klasifikasi penggunaan lahan pada Google Earth Engine. Spatial: Wahana Komunikasi dan Informasi Geografi, 23(2). https://doi.org/10.21009/spatial.232.09

Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationship between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282.

Gitelson, A. A., & Merzlyak, M. N. (1994). Quantitative estimation of chlorophyll using reflectance spectra. Journal of Photochemistry and Photobiology B: Biology, 22(3), 247–252.

Lemenkova, P. (2024). Random forest classifier algorithm of Geographic Resources Analysis Support System (GRASS) GIS for satellite image processing: Case study of Bight of Sofala, Mozambique. Coasts, 4(1), 127–149. https://doi.org/10.3390/coasts4010008

Kavats, O., Khramov, D., Sergieieva, K., & Vasyliev, V. (2020). Monitoring of sugarcane harvest in Brazil based on optical and SAR data. Remote Sensing, 12(8), 1254. https://doi.org/10.3390/rs12081254

Li, M., Zhang, R., Luo, H., Gu, S., & Qin, Z. (2022). Crop mapping in the Sanjiang Plain using an improved object-oriented method based on Google Earth Engine and combined growth period attributes. Remote Sensing, 14(2), 273. https://doi.org/10.3390/rs14020273

Monserud, R. A., & Leemans, R. (1992). Comparing global vegetation maps with the kappa statistic. Ecological Modelling, 62, 275–293.

McVeagh, P., Yule, I., & Grafton, M. (2012). Pasture yield mapping from your groundspread truck. In L. D. Currie & C. L. Christensen (Eds.), Advanced Nutrient Management: Gains from the Past – Goals for the Future (pp. 24–29). Fertilizer and Lime Research Centre, Massey University. Retrieved from http://flrc.massey.ac.nz/publications.html

Rizaldi, A., Darmawan, A., Kaskoyo, H., & Setiawan, A. (2022). Pemanfaatan Google Earth Engine untuk pemantauan lahan agroforestri dalam skema perhutanan sosial. Majalah Geografi Indonesia, 37(1), 12–21.

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium (NASA SP-351, Vol. 1, pp. 309–317). NASA.

Sakamoto, T. (2021). Early classification method for US corn and soybean by incorporating MODIS-estimated phenological data and historical classification maps in random-forest regression algorithm. Photogrammetric Engineering & Remote Sensing, 87(10), 747–758. https://doi.org/10.14358/PERS.87.10.747

Santra, A. K., & Christy, C. J. (2012). Genetic algorithm and confusion matrix for document clustering. International Journal of Computer Science, 3(2), 322–328. Retrieved from http://ijcsi.org/papers/IJCSI-9-1-2-322-328.pdf

Schultz, B., Immitzer, M., Formaggio, A. R., Del'Arco Sanches, I., Jose Barreto Luiz, A., & Atzberger, C. (2015). Self-guided segmentation and classification of multi-temporal Landsat 8 images for crop type mapping in southeastern Brazil. Remote Sensing, 7(11), 14482–14508. https://doi.org/10.3390/rs71114482

Som-Ard, J., Atzberger, C., Izquierdo-Verdiguier, E., Vuolo, F., & Immitzer, M. (2021). Remote sensing applications in sugarcane cultivation: A review. Remote Sensing, 13(20), 4040. https://doi.org/10.3390/rs13204040

Sukoco, B., Armijon, A., & Fadly, R. (2022). Kajian pemanfaatan teknologi Google Earth Engine untuk bidang penginderaan jauh. Jurnal Penelitian Geografi, 10(2), 142–149.

Thompson, C. N., Guo, W., Sharma, B., & Ritchie, G. L. (2019). Using normalized difference red edge index to assess maturity in cotton. Crop Science, 59(5), 2167–2177. https://doi.org/10.2135/cropsci2018.10.0621

Yulianti, T. (2020). Status dan strategi teknologi pengendalian penyakit utama tebu di Indonesia. Perspektif, 19(1), 1–16. Retrieved from https://www.academia.edu/download/79301596/pdf_20ojsPerspektif.pdf

Zulfajri, D., Danoedoro, P., & Murti, S. H. (2022). Klasifikasi penutup/penggunaan lahan data Landsat-8 OLI menggunakan metode random forest. JPJI, 3(1), 1–7. https://doi.org/10.12962/jpji.v3i1.266




DOI: https://doi.org/10.26760/elkomika.v13i3.300

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License