Performance Comparison of 1D-CNN and LSTM Deep Learning Models for Time Series-Based Electric Power Prediction
Abstract
ABSTRAK
Prediksi daya listrik yang akurat sangat penting untuk efisiensi energi, terutama bagi institusi dalam memenuhi kebutuhan energi yang dinamis. Penelitian ini membandingkan kinerja deep learning 1D-CNN dan LSTM untuk memprediksi daya listrik berbasis time series, menggunakan dataset dari Building Automation System (BAS) gedung STMKG. Metrik evaluasi Mean Squared Error (MSE) dan Mean Absolute Error (MAE) digunakan untuk mengukur akurasi. Hasil penelitian menunjukan untuk LSTM nilai MSE rata-rata dari 10 percobaan pada proses pengujian 3,35E-04±0,00013 dan MAE 0,01312±0,0079, sedikit lebih baik dari 1DCNN yang memiliki nilai MSE rata-rata 4,68E-04±0,0003 dan MAE 0,01855±0,00586. Walaupun perbedaannya tidak signifikan, 1D-CNN menawarkan keunggulan dalam efisiensi waktu komputasi 63,08s, 1D-CNN lebih cepat sekitar 84.19%.
Kata kunci: prediksi, daya listrik, time series, CNN, LSTM
ABSTRACT
Accurate electrical power prediction is essential for efficient energy management, especially in institutions with dynamic energy needs. This study compares the performance of 1D-CNN and LSTM for time series based electrical power prediction, using a dataset from the Building Automation System (BAS) of STMKG building. The evaluation metrics Mean Squared Error (MSE) and Mean Absolute Error (MAE) are used to measure accuracy. The results show that the LSTM had an average MSE value of 3.35E-04±0.00013 and an MAE of 0.01312±0.0079 across 10 trials. This is slightly better than the 1D-CNN, which had an average MSE value of 4.68E-04±0.0003 and an MAE of 0.01855±0.00586. Despite the marginal difference, 1D-CNN provides a computational time efficiency advantage of 63.08s, 1D-CNN is about 84.19% faster.
Keywords: prediction, electrical power, time series, CNN, LSTM
Keywords
Full Text:
PDFReferences
Anugrahayu, M., & Azmi, U. (2023). Stock Portfolio Optimization Using Mean-Variance and Mean Absolute Deviation Model Based On K-Medoids Clustering by Dynamic Time Warping. Jurnal Matematika, Statistika dan Komputasi, 20(1), 164-183.
Dong, K., & Lotfipoor, A. (2023). Intelligent bearing fault diagnosis based on feature fusion of one-dimensional dilated CNN and multi-domain signal processing. Sensors, 23(12), 5607.
Fikriansyah, M. N., Nugroho, H. A., & Sinambela, M. (2022, 8-9 Dec. 2022). Low Cloud Type Classification System Using Convolutional Neural Network Algorithm. Paper presented at the 2022 Seventh International Conference on Informatics and Computing (ICIC).
Ishida, K., Ercan, A., Nagasato, T., Kiyama, M., & Amagasaki, M. (2024). Use of onedimensional CNN for input data size reduction in LSTM for improved computational efficiency and accuracy in hourly rainfall-runoff modeling. Journal of Environmental Management, 359, 120931.
Izonin, I., Tkachenko, R., Shakhovska, N., Ilchyshyn, B., & Singh, K. K. (2022). A two-step data normalization approach for improving classification accuracy in the medical diagnosis domain. Mathematics, 10(11), 1942.
Le, X.-H., Ho, H. V., Lee, G., & Jung, S. (2019). Application of long short-term memory (LSTM) neural network for flood forecasting. Water, 11(7), 1387.
Liu, L., & Si, Y.-W. (2022). 1D convolutional neural networks for chart pattern classification in financial time series. The Journal of Supercomputing, 78(12), 14191-14214.
Nugroho, H. A., Hasanah, S., & Yusuf, M. (2022). Seismic Data Quality Analysis Based on Image Recognition Using Convolutional Neural Network. JUITA: Jurnal Informatika, 10(1), 67-75.
Nugroho, H. A., Subiantoro, A., & Kusumoputro, B. (2023). Performance Analysis of Ensemble Deep Learning NARX System for Estimating the Earthquake Occurrences in the Subduction Zone of Java Island. International Journal of Technology, 14(7), 1517-1526.
Raharjo, A. B., Ardianto, A., & Purwitasari, D. (2022). Random Forest Regression Untuk Prediksi Produksi Daya Pembangkit Listrik Tenaga Surya. Briliant: Jurnal Riset dan Konseptual, 7(4), 1058-1075.
Reza, S., Ferreira, M. C., Machado, J. J., & Tavares, J. M. R. (2022). Traffic state prediction using one-dimensional convolution neural networks and long short-term memory. Applied Sciences, 12(10), 5149.
Sahoo, B. B., Jha, R., Singh, A., & Kumar, D. (2019). Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting. Acta Geophysica, 67(5), 1471-1481.
Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V. K., & Soman, K. (2017). Stock price prediction using LSTM, RNN and CNN-sliding window model. Paper presented at the 2017 international conference on advances in computing, communications and informatics (icacci).
Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.
Song, X., Liu, Y., Xue, L., Wang, J., Zhang, J., Wang, J., . . . Cheng, Z. (2020). Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model. Journal of Petroleum Science and Engineering, 186, 106682.
Teruna, D., & Ardiansyah, T. (2024). Analisis Trend Posisi Kredit Umkm Pada Bank Umum Untuk Skala Menengah Di Indonesia. Jurnal USAHA, 5(1), 107-123.
Trinh, T., Dai, A., Luong, T., & Le, Q. (2018). Learning longer-term dependencies in rnns with auxiliary losses. Paper presented at the International Conference on Machine Learning.
Wang, J., Zhang, J., & Wang, X. (2017). Bilateral LSTM: A two-dimensional long short-term memory model with multiply memory units for short-term cycle time forecasting in reentrant manufacturing systems. IEEE Transactions on Industrial Informatics, 14(2), 748-758.
Zhao, B., Lu, H., Chen, S., Liu, J., & Wu, D. (2017). Convolutional neural networks for time series classification. Journal of systems engineering and electronics, 28(1), 162-169.
DOI: https://doi.org/10.26760/elkomika.v13i1.44
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.