Non-Contact Measurement of Infant Respiratory Rate Based on Video using Pose Estimation and Optical Flow Analysis
Abstract
ABSTRAK
Pengukuran laju pernapasan bayi secara non-kontak merupakan alternatif terhadap metode pengukuran tradisional berbasis kontak yang sering menimbulkan ketidaknyamanan. Tujuan penelitian ini adalah mengembangkan metode otomatis untuk mengukur laju pernapasan bayi secara non-kontak melalui rekaman video bayi. Metode yang dikembangkan mendeteksi ROI (Region of Interest) secara otomatis pada area torso bayi dan menghitung laju pernapasan menggunakan optical flow dari ROI tersebut. Pengujian dilakukan pada dataset video AIR-125 dengan berbagai kondisi pencahayaan, pose bayi, dan frame rate. Hasil menunjukkan bahwa pendekatan ini mampu mendeteksi ROI pada bagian torso dan menghasilkan estimasi laju pernapasan dengan Mean Absolute Error 3,82 BPM dan Root Mean Square Error 5,01 BPM . Sistem ini berhasil menawarkan solusi non-kontak untuk pemantauan laju pernapasan bayi yang fleksibel dan dapat diadaptasi di lingkungan rumah maupun rumah sakit.
Kata kunci: laju pernapasan bayi, estimasi pose, non-kontak, optical flow, pemantauan tanda vital.
ABSTRACT
Non-contact respiratory rate measurement in infants presents an innovative alternative to traditional contact-based methods, which often lead to discomfort. This study aims to develop an automated approach for measuring infant respiratory rate via a non-contact method using video recordings. The method automatically detects the Region of Interest (ROI) in the infant's torso and estimates the respiratory rate using optical flow. A pose estimation model is employed to detect the ROI automatically. The method was developed and tested on the AIR-125 video dataset, which includes various lighting conditions, infant poses, and frame rates. Results demonstrate that the proposed method effectively detects the torso and provides reliable respiratory rate estimations with a mean absolute error of 3.82 BPM and Root Mean Square Error 5,01 BPM. This system offers a flexible, non-contact solution for monitoring infant respiratory rate suitable for both home and clinical settings.
Keywords: infant respiratory rate, pose estimation, non-contact, optical flow, vital sign monitoring
Keywords
Full Text:
PDFReferences
Antink, C. H., Lyra, S., Paul, M., Yu, X., & Leonhardt, S. (2019). A Broader Look: Camera-Based Vital Sign Estimation across the Spectrum. Dalam Yearbook of medical informatics (Vol. 28, Nomor 1). https://doi.org/10.1055/s-0039-1677914
Dimitriou, G., Tsintoni, A., Vervenioti, A., Papakonstantinou, D., & Dassios, T. (2021). Effect of prone and supine positioning on the diaphragmatic work of breathing in convalescent preterm infants. Pediatric Pulmonology, 56(10). https://doi.org/10.1002/ppul.25594
Foldesy, P., Zarandy, A., & Szabo, M. (2021). Reference Free Incremental Deep Learning Model Applied for Camera-Based Respiration Monitoring. IEEE Sensors Journal, 21(2). https://doi.org/10.1109/JSEN.2020.3021337
Gibson, K., Al-Naji, A., Fleet, J., Steen, M., Esterman, A., Chahl, J., Huynh, J., & Morris, S. (2019). Non-contact heart and respiratory rate monitoring of preterm infants based on a computer vision system: a method comparison study. Pediatric Research, 86(6). https://doi.org/10.1038/s41390-019-0506-5
Khanam, F. T. Z., Al-Naji, A., Perera, A. G., Gibson, K., & Chahl, J. (2023). Non-contact automatic vital signs monitoring of neonates in NICU using video camera imaging. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 11(2). https://doi.org/10.1080/21681163.2022.2069598
Khanam, F. T. Z., Perera, A. G., Al-Naji, A., Gibson, K., & Chahl, J. (2021). Non-contact automatic vital signs monitoring of infants in a neonatal intensive care unit based on neural networks. Journal of Imaging, 7(8). https://doi.org/10.3390/jimaging7080122
Kyrollos, D. G., Tanner, J. B., Greenwood, K., Harrold, J. A., & Green, J. R. (2021). Noncontact neonatal respiration rate estimation using machine vision. 2021 IEEE Sensors Applications Symposium, SAS 2021 - Proceedings. https://doi.org/10.1109/SAS51076.2021.9530013
Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., Zhang, F., Chang, C.-L., Yong, M. G., Lee, J., Chang, W.-T., Hua, W., Georg, M., & Grundmann, M. (2019). MediaPipe: A Framework for Building Perception Pipelines. http://arxiv.org/abs/1906.08172
Manne, S. K. R., Zhu, S., Ostadabbas, S., & Wan, M. (2023). Automatic Infant Respiration Estimation from Video: A Deep Flow-Based Algorithm and a Novel Public Benchmark. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14246 LNCS. https://doi.org/10.1007/978-3-031-45544-5_10
Maurya, L., Zwiggelaar, R., Chawla, D., & Mahapatra, P. (2023). Non-contact respiratory rate monitoring using thermal and visible imaging: a pilot study on neonates. Journal of Clinical Monitoring and Computing, 37(3). https://doi.org/10.1007/s10877-022-00945-8
Nagy, Á., Földesy, P., Jánoki, I., Terbe, D., Siket, M., Szabó, M., Varga, J., & Zarándy, Á. (2021). Continuous camera-based premature-infant monitoring algorithms for nicu. Applied Sciences (Switzerland), 11(16). https://doi.org/10.3390/app11167215
Rossol, S. L., Yang, J. K., Toney-Noland, C., Bergin, J., Basavaraju, C., Kumar, P., & Lee, H. C. (2020). Non-contact video-based neonatal respiratory monitoring. Children, 7(10). https://doi.org/10.3390/children7100171
Sun, Y., Wang, W., Long, X., Meftah, M., Tan, T., Shan, C., Aarts, R. M., & de With, P. H. N. (2019). Respiration monitoring for premature neonates in NICU. Applied Sciences (Switzerland), 9(23). https://doi.org/10.3390/app9235246
Tveit, D. M., Engan, K., Austvoll, I., & Meinich-Bache, Ø. (2016). Motion based detection of respiration rate in infants using video. Proceedings - International Conference on Image Processing, ICIP, 2016-August. https://doi.org/10.1109/ICIP.2016.7532553
Villarroel, M., Chaichulee, S., Jorge, J., Davis, S., Green, G., Arteta, C., Zisserman, A., McCormick, K., Watkinson, P., & Tarassenko, L. (2019). Non-contact physiological monitoring of preterm infants in the Neonatal Intensive Care Unit. npj Digital Medicine, 2(1). https://doi.org/10.1038/s41746-019-0199-5
Wheatley, I. (2018). Respiratory rate 3: how to take an accurate measurement. Nursing Times, 114(7).
Zeng, Y., Yu, D., Song, X., Wang, Q., Pan, L., Lu, H., & Wang, W. (2024). Camera-Based Cardiorespiratory Monitoring of Preterm Infants in NICU. IEEE Transactions on Instrumentation and Measurement, 73, 1–13. https://doi.org/10.1109/TIM.2024.3395314
DOI: https://doi.org/10.26760/elkomika.v13i1.29
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.