Non-Contact Measurement of Infant Respiratory Rate Based on Video using Pose Estimation and Optical Flow Analysis

NURUL KHAIRA SABILA, MOHAMMAD IKHSAN

Abstract


Non-contact respiratory rate measurement in infants presents an innovative alternative to traditional contact-based methods, which often lead to discomfort. This study aims to develop an automated approach for measuring infant respiratory rate via a non-contact method using video recordings. The method automatically detects the Region of Interest (ROI) in the infant's torso and estimates the respiratory rate using optical flow. A pose estimation model is employed to detect the ROI automatically. The method was developed and tested on the AIR-125 video dataset, which includes various lighting conditions, infant poses, and frame rates. Results demonstrate that the proposed method effectively detects the torso and provides reliable respiratory rate estimations with a mean absolute error of 3.82 BPM and Root Mean Square Error 5,01 BPM. This system offers a flexible, non-contact solution for monitoring infant respiratory rate suitable for both home and clinical settings.


Keywords


Infant Respiratory Rate; Pose Estimation; Non-Contact; Optical Flow; Vital Sign Monitoring

Full Text:

PDF

References


Antink, C. H., Lyra, S., Paul, M., Yu, X., & Leonhardt, S. (2019). A Broader Look: Camera-Based Vital Sign Estimation across the Spectrum. Dalam Yearbook of medical informatics (Vol. 28, Nomor 1). https://doi.org/10.1055/s-0039-1677914

Dimitriou, G., Tsintoni, A., Vervenioti, A., Papakonstantinou, D., & Dassios, T. (2021). Effect of prone and supine positioning on the diaphragmatic work of breathing in convalescent preterm infants. Pediatric Pulmonology, 56(10). https://doi.org/10.1002/ppul.25594

Foldesy, P., Zarandy, A., & Szabo, M. (2021). Reference Free Incremental Deep Learning Model Applied for Camera-Based Respiration Monitoring. IEEE Sensors Journal, 21(2). https://doi.org/10.1109/JSEN.2020.3021337

Gibson, K., Al-Naji, A., Fleet, J., Steen, M., Esterman, A., Chahl, J., Huynh, J., & Morris, S. (2019). Non-contact heart and respiratory rate monitoring of preterm infants based on a computer vision system: a method comparison study. Pediatric Research, 86(6). https://doi.org/10.1038/s41390-019-0506-5

Khanam, F. T. Z., Al-Naji, A., Perera, A. G., Gibson, K., & Chahl, J. (2023). Non-contact automatic vital signs monitoring of neonates in NICU using video camera imaging. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 11(2). https://doi.org/10.1080/21681163.2022.2069598

Khanam, F. T. Z., Perera, A. G., Al-Naji, A., Gibson, K., & Chahl, J. (2021). Non-contact automatic vital signs monitoring of infants in a neonatal intensive care unit based on neural networks. Journal of Imaging, 7(8). https://doi.org/10.3390/jimaging7080122

Kyrollos, D. G., Tanner, J. B., Greenwood, K., Harrold, J. A., & Green, J. R. (2021). Noncontact neonatal respiration rate estimation using machine vision. 2021 IEEE Sensors Applications Symposium, SAS 2021 - Proceedings. https://doi.org/10.1109/SAS51076.2021.9530013

Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., Zhang, F., Chang, C.-L., Yong, M. G., Lee, J., Chang, W.-T., Hua, W., Georg, M., & Grundmann, M. (2019). MediaPipe: A Framework for Building Perception Pipelines. http://arxiv.org/abs/1906.08172

Manne, S. K. R., Zhu, S., Ostadabbas, S., & Wan, M. (2023). Automatic Infant Respiration Estimation from Video: A Deep Flow-Based Algorithm and a Novel Public Benchmark. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14246 LNCS. https://doi.org/10.1007/978-3-031-45544-5_10

Maurya, L., Zwiggelaar, R., Chawla, D., & Mahapatra, P. (2023). Non-contact respiratory rate monitoring using thermal and visible imaging: a pilot study on neonates. Journal of Clinical Monitoring and Computing, 37(3). https://doi.org/10.1007/s10877-022-00945-8

Nagy, Á., Földesy, P., Jánoki, I., Terbe, D., Siket, M., Szabó, M., Varga, J., & Zarándy, Á. (2021). Continuous camera-based premature-infant monitoring algorithms for nicu. Applied Sciences (Switzerland), 11(16). https://doi.org/10.3390/app11167215

Rossol, S. L., Yang, J. K., Toney-Noland, C., Bergin, J., Basavaraju, C., Kumar, P., & Lee, H. C. (2020). Non-contact video-based neonatal respiratory monitoring. Children, 7(10). https://doi.org/10.3390/children7100171

Sun, Y., Wang, W., Long, X., Meftah, M., Tan, T., Shan, C., Aarts, R. M., & de With, P. H. N. (2019). Respiration monitoring for premature neonates in NICU. Applied Sciences (Switzerland), 9(23). https://doi.org/10.3390/app9235246

Tveit, D. M., Engan, K., Austvoll, I., & Meinich-Bache, Ø. (2016). Motion based detection of respiration rate in infants using video. Proceedings - International Conference on Image Processing, ICIP, 2016-August. https://doi.org/10.1109/ICIP.2016.7532553

Villarroel, M., Chaichulee, S., Jorge, J., Davis, S., Green, G., Arteta, C., Zisserman, A., McCormick, K., Watkinson, P., & Tarassenko, L. (2019). Non-contact physiological monitoring of preterm infants in the Neonatal Intensive Care Unit. npj Digital Medicine, 2(1). https://doi.org/10.1038/s41746-019-0199-5

Wheatley, I. (2018). Respiratory rate 3: how to take an accurate measurement. Nursing Times, 114(7).

Zeng, Y., Yu, D., Song, X., Wang, Q., Pan, L., Lu, H., & Wang, W. (2024). Camera-Based Cardiorespiratory Monitoring of Preterm Infants in NICU. IEEE Transactions on Instrumentation and Measurement, 73, 1–13. https://doi.org/10.1109/TIM.2024.3395314




DOI: https://doi.org/10.26760/elkomika.v13i1.29

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License