Influences of Environmental Factors of a Hybrid Photovoltaic and Thermoelectric Generation System
Sari
ABSTRAK
Saat ini, pemanfaatan sumber energi terbarukan menjadi salah satu pilihan dalam menjawab tantangan krisis energi. Sistem pembangkit listrik fotovoltaiktermoelektrik hibrida yang menggabungkan keunggulan konversi energi cahaya dan panas dari matahari perlu dikaji kinerjanya. Penelitian ini membahas peningkatan efisiensi pembangkit listrik tenaga surya hybrid panel-termoelektrik dan hubungannya dengan pengaruh faktor lingkungan. Akuisisi data berdasarkan analisis komputasi menganalisis statistik multivariat, seperti regresi, korelasi, boxplot, dan principal component analysis (PCA). Hasil penelitian menunjukkan daya masukan MPPT lebih tinggi dibandingkan daya keluaran, dengan efisiensi tipikal sebesar 99,66%. Peningkatan suhu udara membuat tegangan sedikit menurun, dan daya yang dihasilkan meningkat cukup besar seiring dengan naiknya suhu udara. Peda penelitian terlihat bahwa radiasi ultraviolet (UV) meningkat secara signifikan seiring dengan peningkatan suhu lingkungan.
Kata kunci: efisiensi, faktor lingkungan, fotovoltaik, analisis statistik, termoelektrik
ABSTRACT
Recently, using renewable energy sources is one option in answering the challenge of the energy crisis. The hybrid photovoltaic-thermoelectric power generation system is a solution that combines the advantages of converting both light and heat energy from the sun, which needs to be studied. This study discussed the increase in efficiency in a hybrid solar panel-thermoelectric power generation and its relationship to the influence of environmental factors. The data acquisition is based on the computational analyses of multivariate statistics, such as regressions, correlations, boxplots and principal component analysis. It showed the input power of the MPPT was higher than the output power, with a typical efficiency of 99.66%. The rising air temperature decreased the voltages and generated power considerably, increasing as the air temperature rose. Finally, the ultraviolet (UV) radiation increased significantly as the ambient temperature rose.
Keywords: efficiency, environmental factor, photovoltaic, statistical analysis, thermoelectric
Kata Kunci
Teks Lengkap:
PDF (English)Referensi
Al-Waeli, A. H., Sopian, K., Kazem, H. A., & Chaichan, M. T. (2024). Photovoltaic Thermal Collectors with Nanofluids and Nano-PCM. Springer.
Chen, X., Huang, Y., & Chen, Z. (2023). Potential evaluation of an annular thermoelectric cooler driven by a dye-sensitized solar cell. Solar Energy, 258, 351-360.
Dezfouli, M. M. S., Dehghani-Sanij, A., & Abdul Kadir, K. (2024). Modelling and Energy Analysis of a Solar Cooling System Powered by a Photovoltaic (PV) System for a Net-Zero Energy Building (NZEB) Using TRNSYS-PVsyst. Reducing the Effects of Climate Change Using Building-Integrated and Building-Applied Photovoltaics in the Power Supply ,(pp. 315-350). Cham: Springer Nature Switzerland.
Durrheim, K., & Tredoux, C. (2004). Numbers, hypotheses & conclusions: A course in statistics for the social sciences. Juta and Company Ltd.
Gharapetian, D., Fini, M. A., Asgari, M., & Shabani, B. (2024). A nanofluid-based hybrid photovoltaic-thermal-thermoelectric generator system for combined heat and power applications. Energy Conversion and Management, 301, 118066.
Habiburosid, Habiburosid & Indrasari, Widyaningrum & Fahdiran, Riser. (2019). Karakterisasi Panel Surya Hybrid Berbasis Sensor Ina219. Prosiding Seminar Nasional Fisika (E-Journal). 8. SNF2019-PA. 10.21009/03.SNF2019.02.PA.25.
Indira, S. S., Vaithilingam, C. A., Sivasubramanian, R., Chong, K. K., Narasingamurthi, K., & Saidur, R. (2022). Prototype of a novel hybrid concentrator photovoltaic/thermal and solar thermoelectric generator system for outdoor study. Renewable Energy, 201, 224-239.
Khoiriyah, K., Mustaqimah, A. S. F. A. M., Maaulana, M. T., & Kamal, N. I. (2018). Rancang Bangun Dan Karakteristik Generator Termoelektrik Dengan Menggunakan Energi Panas Sinar Matahari. In Prosiding Seminar Nasional Fisika (SINAFI) (p. 317).
Lorenzi, B., Mariani, P., Reale, A., Di Carlo, A., Chen, G., & Narducci, D. (2021). Practical development of efficient thermoelectric–Photovoltaic hybrid systems based on wide-gap solar cells. Applied Energy, 300, 117343.
Lorenzi, B., & Chen, G. (2018). Theoretical efficiency of hybrid solar thermoelectric-photovoltaic generators. Journal of Applied Physics, 124(2).
Lorenzi, B., Mariani, P., Reale, A., Di Carlo, A., Chen, G., & Narducci, D. (2021). Practical development of efficient thermoelectric–Photovoltaic hybrid systems based on wide-gap solar cells. Applied Energy, 300, 117343.
Mahmoudinezhad, S., Atouei, S. A., Cotfas, P. A., Cotfas, D. T., Rosendahl, L. A., & Rezania, A. (2019). Experimental and numerical study on the transient behavior of multi-junction solar cell-thermoelectric generator hybrid system. Energy Conversion and Management, 184, 448-455.
Mariprasath, T., Kishore, P., & Kalyankumar, K. (2024). Solar Photovoltaic System Modelling and Analysis: Design and Estimation. CRC Press.
Matias, F., Pires, L. C., Silva, P. D., & Gaspar, P. D. (2020). Experimental study of a hybrid solar photovoltaic, thermoelectric and thermal module. In E3S Web of Conferences, 152, 01005. EDP Sciences.
Matias, F., Pires, L. C., Silva, P. D., & Gaspar, P. D. (2020). Experimental study of a hybrid solar photovoltaic, thermoelectric and thermal module. In E3S Web of Conferences , 152, 01005. EDP Sciences.
Narducci, D., Bermel, P., Lorenzi, B., Wang, N., & Yazawa, K. (2018). Hybrid and fully thermoelectric solar harvesting, 268. Cham: Springer International Publishing.
Prapawan, T. (2019). Solar cell and thermoelectric hybrid generators. In Journal of Physics: Conference Series, 1259(1), 012021). IOP Publishing.
Pawula, F., Daou, R., Hébert, S., & Maignan, A. (2021). Thermoelectric properties beyond the standard Boltzmann model in oxides: A focus on the ruthenates. In Thermoelectric Energy Conversion (pp. 3-14). Woodhead Publishing.
Prapawan, T. (2019). Solar cell and thermoelectric hybrid generators. In Journal of Physics: Conference Series, 1259(1), 012021). IOP Publishing.
Qasim, M. A., Velkin, V. I., Praveenkumar, S., Yang, D., Mola, A. H., & Shcheklein, S. E. (2022). Design and implementation of a thermoelectric power generation panel utilizing waste heat based on solar energy. International Journal of Renewable Energy Research (IJRER), 12(3), 1234-1241.
Rodrigo, P. M., Valera, A., Fernandez, E. F., & Almonacid, F. M. (2019). Annual energy harvesting of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules. IEEE Journal of Photovoltaics, 9(6), 1652-1660.
Saleh, U. A., Johar, M. A., Jumaat, S. A. B., Rejab, M. N., & Jamaludin, W. A. W. (2021). Evaluation of a PV-TEG hybrid system configuration for an improved energy output: a review. International Journal of Renewable Energy Development, 10(2), 385-400.
Saseendran, A. P., Hartl, C., Tian, Y., & Qin, Y. (2023). Development, optimization, and testing of a hybrid solar panel concept with energy harvesting enhancement. In Journal of Physics: Conference Series, 2526(1), 012033). IOP Publishing.
Sheikholeslami, M., & Khalili, Z. (2023). Investigation of solar photovoltaic-thermoelectric system for building unit in presence of helical tapes and jet impingement of hybrid nanomaterial. Journal of Building Engineering, 74, 106871.
Sheikholeslami, M., & Khalili, Z. (2023). Investigation of solar Photovoltaic cell utilizing hybrid nanofluid confined jet and helical fins for improving electrical efficiency in existence of thermoelectric module. Applied Thermal Engineering, 234, 121329.
Stefanie, A., & Bangsa, I. A. (2021). Hybrid Generator Thermoelektrik Panel Surya Thin Film Sf 170-S Cis 170 Watt Pada Plts 1 Mw Cirata. Jurnal Teknik Elektro Uniba (JTE UNIBA), 6(1), 154-160.
Tyagi, K., Gahtori, B., Kumar, S., & Dhakate, S. R. (2023). Advances in solar thermoelectric and photovoltaic-thermoelectric hybrid systems for power generation. Solar Energy, 254, 195-212.
Yan, J., Liao, X., Ji, S., & Zhang, S. (2018). MEMS-based thermoelectric–photoelectric integrated power generator. Journal of Microelectromechanical Systems, 28(1), 1-3.
Yazawa, K., Bahk, J. H., & Shakouri, A. (2021). Thermoelectric energy conversion devices and systems, 7. World Scientific.
Wang, N., Wang, A., Zhang, C., Shan, H. S., Jia, H. Z., Zheng, J. H., ... & Zuo, L. (2022). Self-adaptive PDLC control strategy with smart light intensity adjustment using photovoltaic-thermoelectric hybrid energy supply technology. IEEE Transactions on Industrial Electronics, 70(10), 10146-10155.
Waluyo, Widura, A., Hadiatna, F., & Maulana, R. (2021). Implementation and Evaluation of a 3.3 kWp IoT-Based Photovoltaic Microgrid-Interactive Configuration. IEEE Access, 9, 106947-106963.
Zhao, Q., Li, J., & Zhang, H. (2024). Synergizing perovskite solar cell and thermoelectric generator for broad-spectrum utilization: Model updating, performance assessment and optimization. Energy, 289, 130008.
DOI: https://doi.org/10.26760/elkomika.v12i4.%25p
Refbacks
- Saat ini tidak ada refbacks.
_______________________________________________________________________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2459-9638
diterbitkan oleh :
Teknik Elektro Institut Teknologi Nasional Bandung
Alamat : Gedung 20 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 206) Fax. 7202892
Surat Elektronik : jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Statistik Pengunjung
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.