Desain Antena Radar Otomotif untuk Deteksi Target Jarak Jauh

AULIA SAHARANI, GAMANTYO HENDRANTORO, DEVY KUSWIDIASTUTI

Abstract


ABSTRAK

Seiring meningkatnya kebutuhan keselamatan berkendara, teknologi radar otomotif harus terus berkembang untuk memberikan kinerja yang lebih akurat dalam mendeteksi potensi bahaya di jalan. Salah satu aspek penting dalam meningkatkan keakuratan radar adalah resolusi sudut yang lebih tinggi, sehingga memungkinkan radar mendeteksi objek lebih jelas dan presisi. Dalam makalah ini, kami mengusulkan desain antena array linier menggunakan 128 elemen antena Franklin yang dioptimalkan melalui teknik pemangkasan elemen. Teknik ini efektif mengurangi jumlah elemen sebesar 35.7% dari jumlah awal tanpa mengorbankan performa antena. Hasil simulasi menunjukkan desain antena ini menghasilkan lebar beam sempit hingga 1°, tingkat sidelobe di bawah -20 dB, dan direktivitas tinggi di atas 10 dB. Selain itu, desain ini mampu mendeteksi objek dalam jangkauan hingga 300 meter dengan akurasi tinggi, menjadikannya efektif untuk aplikasi radar otomotif. Pendekatan ini efisien dari segi biaya dan material, serta meningkatkan deteksi radar dalam kondisi visibilitas rendah.

Kata kunci: antena array, radar kendaraan, antena Franklin, lebar beam sempit, tingkat sidelobe rendah

 

ABSTRACT

With the increasing demand for safety driving, automotive radar technology must continuously evolve to provide more accurate performance in detecting potential road hazards. One crucial aspect of improving radar accuracy is higher angular resolution, enabling the radar to detect objects more clearly and precisely. In this paper, we propose a linear array antenna design using 128 Franklin antenna elements optimized through thinning techniques. This technique effectively reduces the number of elements by 35.7% from the initial number without sacrificing antenna performance. Simulation results demonstrate that this antenna design produces a narrow beamwidth of up to 1°, sidelobe levels below -20 dB, and high directivity above 10 dB. Additionally, this design is capable of detecting objects within a range of up to 300 meters with high accuracy, making it effective for automotive radar applications. This approach is cost-effective and materialefficient, enhancing radar detection in low-visibility conditions.

Keywords: array antenna, automotive radar, Franklin antenna, narrow beamwidth, low sidelobe level


Keywords


antena array; radar kendaraan; antena Franklin; bemwidth sempit; sidelobe level rendah

References


Akbar, F. S., Ligthart, L. P., & Hendrantoro, G. (2021). A Toolbox of Subarrays for Optimizing Wide-Angular Scanning Arrays Using Trade-Offs Between Scan Loss and Side Lobe Level. IEEE Access, 9, 16337–16359. doi: 10.1109/ACCESS.2021.3052049

Aziz, I., Liao, W.-C., Aliakbari, H., & Simon, W. (2020). Compact and Low Cost Linear Antenna Array for Millimeter Wave Automotive Radar Applications. 2020 14th European Conference on Antennas and Propagation (EuCAP), 1–4. doi: 10.23919/EuCAP48036.2020.9135772

Balanis, C. A. (2016). Antenna Theory Analysis And Design (4th ed.). John Wiley & Sons.

Cao, Y., Yan, S., Li, J., & Chen, J. (2022). A Pillbox Based Dual Circularly-Polarized Millimeter-Wave Multi-Beam Antenna for Future Vehicular Radar Applications. IEEE Transactions on Vehicular Technology, 71(7), 7095–7103. doi: 10.1109/TVT.2022.3162299

Firdausi, A., Hendrantoro, G., Setijadi, E., & Alaydrus, M. (2023). Analysis and Improvement of Bandwidth and Gain of Millimeter-Wave Microstrip Franklin Antenna With Proximity-Coupled Feed. IEEE Access, 11, 104723–104734. doi: 10.1109/ACCESS.2023.3317999

Foysal, Md. F., Mahmud, S., & Baki, A. K. M. (2021). A Novel High Gain Array Antenna Design for Autonomous Vehicles of 6G Wireless Systems. 2021 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), (1–5). doi: 10.1109/GECOST52368.2021.9538677

Hakobyan, G., & Yang, B. (2019). High-Performance Automotive Radar: A Review of Signal Processing Algorithms and Modulation Schemes. IEEE Signal Processing Magazine, 36(5), 32–44. doi: 10.1109/MSP.2019.2911722

Hasch, J., Topak, E., Schnabel, R., Zwick, T., Weigel, R., & Waldschmidt, C. (2012). Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band. IEEE Transactions on Microwave Theory and Techniques, 60(3), 845–860. doi: 10.1109/TMTT.2011.2178427

ITU-R. (2018). Systems characteristics of automotive radars operating in the frequency band 76-81 GHz for intelligent transport systems applications (ITU-R M.2057-1).

Ji, Q., Zhang, L., Zhang, J., Chen, Y., Mao, C., & He, Y. (2022). A 77 GHz Series-fed Leaky-Wave Antenna for Automotive Radar System. 2022 IEEE MTT-S International Wireless Symposium (IWS), 1–3. doi: 10.1109/IWS55252.2022.9977702

Kemenkominfo. (2020). Peraturan Direktur Jendral Sumber Daya dan Perangkat Pos dan Informatika Nomor 03 Tahun 2020 (No. 03).

Mirzaee, M., & Tavassolian, N. (2020). Low-Profile Wearable Wideband Antenna with High Gain Based on Franklin Array for Future 5G Wireless Body Area Networks. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 449–450. doi: 10.1109/IEEECONF35879.2020.9329727

Pandharipande, A., Cheng, C.-H., Dauwels, J., Gurbuz, S. Z., Ibanez-Guzman, J., Li, G., Piazzoni, A., Wang, P., & Santra, A. (2023). Sensing and Machine Learning for Automotive Perception: A Review. IEEE Sensors Journal, 23(11), 11097–11115. doi: 10.1109/JSEN.2023.3262134

Saharani, A., Hendrantoro, G., Kuswidiastuti, D., Akbar, F. S., & Firdausi, A. (2024). Design of Planar Arrays with Cross-line Franklin Arrays as Elements for Vehicular Radars. Telah dipresentasikan pada Asia-Pacific Microwave Conference (APMC 2024).

Sun, J., Huang, L., Zhang, Y., & Zhang, X. (2023). A High Angular Resolution Transceivers Cascaded Automotive Front Radar with Novel Antennas. 2023 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (IWEM), 72–74. doi: 10.1109/iWEM58222.2023.10234871

Waldschmidt, C., Hasch, J., & Menzel, W. (2021). Automotive Radar — From First Efforts to Future Systems. IEEE Journal of Microwaves, 1(1), 135–148. doi: 10.1109/JMW.2020.3033616

Xiang, D., Li, W., Sun, X., Wang, H., & Su, Y. (2024). Sidelobe Suppression for High-Resolution SAR Imagery Based on Spectral Reshaping and Feature Statistical Difference. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–14. doi: 10.1109/TGRS.2024.3394405

Yoo, S., Milyakh, Y., Kim, H., Hong, C., & Choo, H. (2020). Patch Array Antenna Using a Dual Coupled Feeding Structure for 79 GHz Automotive Radar Applications. IEEE Antennas and Wireless Propagation Letters, 19(4), 676–679. doi: 10.1109/LAWP.2020.2976545

Zhou, L.-J., Ban, Y.-L., Lian, J.-W., & Sun, Q. (2022). An Optimum Method of Linear Thinned Array Based on Iterative FFT Algorithm. 2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP), 1–2. doi: 10.1109/APCAP56600.2022.10068888




DOI: https://doi.org/10.26760/elkomika.v12i4.%25p

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License