Pengaruh Temperatur Terhadap Kinerja Sel Pembangkit Listrik Direct Methanol (DMFC)

MAYA RAMADIANTI MUSADI, YUNIA ROSSA, GILANG RAMADHAN SURYAMAN

Abstract


ABSTRAK

Penelitian ini bertujuan menjelaskan prinsip-prinsip termodinamika-elektrokimia pada sel pembangkit listrik Direct Methanol Fuel Cell (DMFC). Investigasi parametrik Fuel Cell dilakukan untuk mensimulasikan perilaku kinerja sel dalam berbagai temperatur operasi. Sistem ini dimodelkan secara matematika dan disimulasikan serta hasilnya divalidasi dengan hasil teoritis dan eksperimental dari literatur. Hasil simulasi menunjukkan bahwa dengan meningkatnya temperatur operasi sel pembangkit listrik akan menurunkan energi bebas Gibbs. Hal ini sesuai dengan persamaan termodinamika tentang energi Gibbs. Sedangkan kenaikan temperatur sel akan menaikkan tegangan reversibel dan output cell voltage serta akan menurunkan batas efisiensi maksimum fuel cell. Model yang dihasilkan juga menggambarkan adanya hubungan antara tegangan sel dengan energi bebas Gibbs. Berdasarkan hasil simulasi diperoleh sel pembangkit listrik yang digunakan memliki tegangan cell reversibel maksimum adalah sekitar 1,2 V pada 25OC dan batas efisiensi maksimum 96,6% pada 25OC dan minimum 95,2% pada 100OC.

Kata kunci: fuel cell, sel pembangkit listirk direct methanol, temperatur fuel cell, energi bebas Gibbs, tegangan reversibel, batas efisiensi maksimum

 

ABSTRACT

The purpose of this study is to explain the principles of thermodynamicselectrochemistry in Direct Methanol (DMFC) power generation. Fuel Cell parametric investigations were carried out to simulate the performance of cells under various operating temperatures. The system was modeled and simulated and then the results were validated with theoretical and experimental results from the literature. The simulation results show that with an increase in the operating temperature of the fuel cell will reduce Gibbs' free energy. This corresponds to Gibbs' energy thermodynamics equation. Meanwhile, an increase in the temperature of the cell will increase the reversible voltage and output cell voltage and will lower the maximum efficiency limit of the fuel cell. The resulting model also illustrates the relationship between cell voltage and Gibbs' free energy. Based on the simulation results, the maximum reversible cell voltage used is about 1.2 V at 25OC and the maximum efficiency limit is 96.6% at 25OC and minimum 95.2% at 100OC.

Keywords: fuel cell, direct methanol fuel cell, temperature of fuel cell, Gibbs free energy, reversible voltage, maximum efficiency limit


Keywords


fuel cell; sel pembangkit listirk direct methanol; temperatur fuel cell; energi bebas Gibbs; tegangan reversibel; batas efisiensi maksimum

References


Ahmed, A.A., Labadidi, M.A., Hamada, A.T., & Orhan, M.F. (2022). Design and Utilization of a Direct Methanol Fuel Cell. Membranes, 12, 1266 https://doi.org/10.3390/membranes12121266

Alkhalidi, A., Alqarra, K., Abdelkareem, M.A., & Olabi, A.G. (2022). Renewable Energy Curtailment Practices in Jordan And Proposed Solutions. Int. J. Thermofluids, 16, 100196 https://doi.org/10.1016/j.ijft.2022.100196. VolumeISSN 2666-2027

Biswas, M., & Wilberforce, T. (2023). Dynamic Thermal Model Development ff Direct Methanol Fuel Cell. Int. J. Thermofluids, 17, 100294 https://doi.org/10.1016/j.ijft.2023.100294

Breeze, P.(2014). Fuel Cells., Power generation technologies (2nd ed.), Boston : Newnes, 129-152 https://doi.org/10.1016/B978-0-08-098330-1.00007-7

Cheng, Y., Zhang, J., Lu, S.& Jiang, S.P. (2020). Significantly Enhanced Performance of Direct Methanol Fuel Cells at Elevated Temperatures. J. Power Sources, 450, 227620. https://doi.org/10.1016/j.jpowsour.2019.227620

Fakourian, Sh., Kalbasi, M., & Hasani-Sadrabadi, M.M. (2015). A Simple Analytical Model of a Direct Methanol Fuel Cell. Journal of Fuel Cell Science and Technology, 12(5).

Govindarasu, R.& Somasundaram, S. (2020). Studies on Influence of Cell Temperature in Direct Methanol Fuel Cell Operation. Processes, 8(3), 353 https://doi.org/10.3390/pr8030353

Hill, D., Martin, A., Martin-Nelson, N., Granger, C., Memmott, M., Powell, K., & Hedengren, J. (2022). Techno-Economic Sensitivity Analysis for Combined Design and Operation of A Small Modular Reactor Hybrid Energy System. Int. J. Thermofluids, 16, 100191.

Ince, A.C., Karaoglan, M.U., Glüsen, A., Colpan, C.O., Müller, M., & Stolten, D. (2019). Semiempirical Thermodynamic Modeling of A Direct Methanol Fuel Cell System. International Journal Energy Research, 1–15. DOI: 10.1002/er.4508

Musadi, M.R., Salma, S., Rozada, F., Annisaa, N.R., Lucyana, A., Faulina, F, & Khalid, F. (2024). Investigation of the Effects of Temperature and Catalyst on the Liquid Products of Waste Lubricant Oil Catalytic Pyrolysis. Faculty of Industrial Technology International Congress (FOITIC), (pp. 1 – 10). https://doi.org/10.1051/e3sconf/202448401001

Prapainainar, P., Dua, Z., Kongkachuichaya, P., Holmes, S.M., & Prapainainar, C. (2017). Mordenite/Nafion and Analcime/Nafion Composite Membranes Prepared by Spray Method for Improved Direct Methanol Fuel Cell Performance. Applied Surface Science, 421 (Part A), 24-41 https://doi.org/10.1016/j.apsusc.2017.02.004

Purwanto, W.P., Slamet, Rifki, M., Hayatina, I., Theresa, T., Priyanggoro, P., Pattyranie, S.P., Verina, J.W.D, & Rochani, S. (2014). Pengembangan Prototipe Direct Methanol Fuel Cell (DMFC) dan Pengaruh Kandung Nafion Membrane Electrode Assembly (MEA). Jurnal Teknik Kimia Indonesia, 7(2), 792 -797

Ritchie, H., & Roser, M. (2017, Oktober 2). Fossil Fuels. https://ourworldindata.org/fossil-fuels

Rosenthal, N., Vilekar, S. & Datta, R.(2012) A Comprehensive Yet Comprehensible Analytical Model for The Direct Methanol Fuel Cell. J. Power Sources, 206, 129–143 https://doi.org/10.1016/j.jpowsour.2012.01.080Get rights and content

Roser, M., Ritchie, H. & Ortiz-Ospina. (2024, Juli 1). World Population Growth. Population by world region (ourworldindata.org).

Sun, C., Negro, E., Vezzù, K., Pagot, G., Cavinato, G., Nale, A., Bang, Y.H., & Di Noto, V. (2019). Hybrid Inorganic-Organic Proton-Conducting-Conducting Membranes Based on SPEEK Doped with WO3 Nanoparticles for Application in Vanadium Redox Flow Batteries. J. Electrochim. Acta, 309, 311–325




DOI: https://doi.org/10.26760/elkomika.v12i4.852

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License