Simulasi Distribusi Fluks dan Tegangan Generator Magnet Permanen Satu-Fasa Hasil Modifikasi Motor Induksi Rotor Sangkar Satu-Fasa

I MADE WIWIT KASTAWAN, RAHMAT HIDAYAT

Sari


ABSTRAK

Modifikasi motor induksi rotor sangkar satu-fasa (MI) menjadi generator magnet permanen satu-fasa (GMP) memberi manfaat seperti re-use MI bekas serta aplikasinya untuk memanen potensi energi hidro sungai kecil berelevasi rendah. Modifikasi diawali dengan pembongkaran MI untuk memeroleh ukuran bagian-bagian utamanya. Berdasarkan ukuran rotor, sejumlah kutub-kutub magnet permanen ditanamkan. Rewinding belitan stator dilakukan berdasarkan jumlah dan ukuran slot. Rancangan GMP ini kemudian disimulasikan dengan Magnet Infolytica untuk menampilkan distribusi fluks dan pembangkitan tegangannya. Simulasi ini menggunakan metode elemen hingga dengan tahapan yaitu pemodelan dan inisiasi rancangan GMP, pengaturan mesh, pengaturan winding dan pengaturan motion. Hasilnya menunjukkan distribusi fluks yang tidak merata yaitu 0 – 0,6438 T (rendah), 0,6438 – 1,2876 T (sedang) dan 1,2876 – 1,6095 T (tinggi). Tegangan keluaran yang dihasilkan adalah non-sinusioidal dengan magnituda 112,33 V dan THD 5,89% pada kondisi tanpa beban dan putaran penggerak 750 rpm.

Kata kunci: distribusi fluks, GMP, MI, pembangkitan tegangan, THD.

 

ABSTRACT

Modification of single-phase squirrel cage induction motor (IM) into single-phase permanent magnet generator (PMG) gives benefits such as re-use of wasted IM and its application for harvesting hydro energy potential of low-elevation river. Firstly, the IM is diassembled to get all main components dimension. Based on rotor dimension, permanent magnet poles are implanted. Rewinding of stator windings is done according to number and dimension of the slots. Then, PMG design is simulated by Magnet Infolytica to get flux distribution and voltage generation profiles. The simulation is based on finite elemen method, consisted of modelling and initiation of PMG design as well as mesh, winding and motion settings. The results show non-uniform flux distribution i.e. 0 – 0.6438 T (low), 0.6438 – 1.2876 T (medium) and 1.2876 – 1.6095 T (high). Output voltage generated is non-sinusoidal with magnitude of 112.33 V and THD of 5.89% under no-load condition and 750 rpm of prime mover rotation.

Keywords: flux distribution, PMG, IM, voltage generation, THD.


Kata Kunci


distribusi fluks; GMP; MI; pembangkitan tegangan; THD

Teks Lengkap:

PDF

Referensi


Ahmed, D., Karim, F., & Ahmad, A. (2014). Design and modeling of low-speed axial flux permanent magnet generator for wind based micro-generation systems. 2014 International Conference on Robotics and Emerging Allied Technologies in Engineering (ICREATE), (pp. 51–57).

Amin, S., Madanzadeh, S., Khan, S., Bukhari, S. S. H., Akhtar, F., & Ro, J.-S. (2022). Effect of the magnet shape on the performance of coreless axial flux permanent magnet synchronous generator. Electrical Engineering, 1–10.

Bell, J. (2023). Rare Earth Magnets: Manufacturing and Applications. Rare Earth Metals and Minerals Industries: Status and Prospects, 295–317.

Chavan, R. D., & Bapat, V. N. (2016). The study of different topologies of Axial Flux Permanent Magnet generator. 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), (pp. 202–206).

Chung, D.-W., & You, Y.-M. (2014). Design and performance analysis of coreless axial-flux permanent-magnet generator for small wind turbines. Journal of Magnetics, 19(3), 273–281.

Di Dio, V., Cipriani, G., & Manno, D. (2022). Axial Flux Permanent Magnet Synchronous Generators for Pico Hydropower Application: A Parametrical Study. Energies, 15(19), 6893.

Eldoromi, M., Tohidi, S., Feyzi, M. R., Rostami, N., & Emadifar, R. (2018). Improved design of axial flux permanent magnet generator for small-scale wind turbine. Turkish Journal of Electrical Engineering and Computer Sciences, 26(6), 3084–3099.

Fikri, M. N., Buana, U. C., & Santoso, D. B. (2022). Desain Permanent Magnet Synchronous Generator Untuk Pembangkit Listrik Tenaga Bayu Daya 500 Watt Dengan Kecepatan Angin Rendah. JTEV (Jurnal Teknik Elektro Dan Vokasional), 8(2), 200–212.

Handika, Y. (2023). Pembuatan Generator Magnet Permanen 12 Kutup Menggunakan Motor Induksi. CYCLOTRON, 6(2).

Hatziargyriou, G. (2014). Design aspects of coreless axial flux permanent magnet generators for low cost small wind turbine applications. Scientific Proceedings of the EWEA Annual Conference and Exhibition, Barcelona.

Hlaing, T. T. (2018). Design and Construction of Low Speed Axial Flux Generator with Stationary Bike. International Journal of Scientific and Research Publications, 8(9).

Irfan, M., Ermanu, A. H., Suhardi, D., Kasan, N., Effendy, M., Pakaya, I., & Faruq, A. (2018). A design of electrical permanent magnet generator for rural area wind power plant. International Journal of Power Electronics and Drive Systems, 9(1), 269.

Kastawan, I. M. W., Erwin, Y., Rusmana, R., & Krisna, K. (2022). Field Experimental Study on Electrical Power Generation Using AC Single-Phase Permanent Magnet Generator. 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021), (pp. 162–167).

Kastawan, I. M. W., Yusuf, E., NKS, M. A. D., & Setiadi, H. (2021). Modification of the SinglePhase AC Induction Motor to the Low-Speed Single-Phase AC Permanent Magnet Generator. 2nd International Seminar of Science and Applied Technology (ISSAT 2021), (pp. 513–520).

Lumbantoruan, D. (2022). Analisa Dan Perancangan Permanent Magnet Synchronous Generator 12 Slot 8 Pole Dengan Menggunakan Fem. Universitas Medan Area.

Nugroho, S. (2016). Desain Generator Magnet Permanen rpm Rendah Dengan Memanfaatkan Motor Kipas. Universitas Muhammadiyah Surakarta.

Prasetia, H. (2023). A Further Modification of Squirrel Cage Single-Phase Induction Motor to Low-Speed Single-Phase Permanent Magnet Generator to Generate Sinusoidal Output Voltage. Proceedings of the 6th FIRST 2022 International Conference (FIRST 2022), 14, 191.

Raja, H. C., & Kapo, H. Y. S. (2017). Rancang Bangun Alat Pengatur Kecepatan Putaran Motor Induksi 1 Phasa 1 PK. UNIVERSITAS 17 AGUSTUS 1945 SURABAYA.

Saputra, R. (2014). Rancang Bangun Alat Pengatur Kecepatan Motor Induksi Satu Fasa Melalui Pengaturan Frekuensi Menggunakan Multivibrator Astable. Universitas Bengkulu.

Setyawan, E. Y., Nakhoda, Y. I., Krismanto, A. U., Mustiadi, L., Yandri, E., & Burlakovs, J. (2020). Design and construction of single phase radial flux permanent magnet generators for pico hydro scale power plants using propeller turbines in water pipes. E3S Web of Conferences, 188, 6.

Theraja, B. L. (2014). A textbook of electrical technology. S. Chand Publishing.

Wirtayasa, K., Irasari, P., Kasim, M., Widiyanto, P., & Hikmawan, M. (2017). Design of an axial-flux permanent-magnet generator (AFPMG) 1 kW, 220 volt, 300 rpm, 1 phase for pico hydro power plants. 2017 International Conference on Sustainable Energy Engineering and Application (ICSEEA), (pp. 172–179).




DOI: https://doi.org/10.26760/elkomika.v12i3.784

Refbacks

  • Saat ini tidak ada refbacks.


_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License