Uji Kinerja Ventilator pada Mode Synchronized Intermittent Mandatory Ventilation (SIMV)
Abstract
ABSTRAK
Gagal napas terjadi ketika sistem pernapasan tidak mampu mempertahankan kadar oksigen yang memadai dalam darah, baik dengan atau tanpa akumulasi karbon dioksida. Ventilator adalah alat yang mendukung pernapasan seseorang yang mengalami gagal napas. Pengaturan ritme pernapasan oleh mesin sering kali dirasakan tidak nyaman oleh pasien yang sadar, sehingga diperlukan sinkronisasi antara ritme pernapasan pasien dan mesin. Kami telah mengembangkan sebuah ventilator bernama COVENT untuk mengatasi masalah ini. Dalam artikel ini, kami melaporkan hasil uji kinerja ventilator dalam mode Synchronized Intermittent Mandatory Ventilation (SIMV). Hasil penelitian diuji dengan menggunakan VT gas flow analyzer, diperoleh akurasi pembacaan Positive End Expiratory Pressure (PEEP) sebesar 98,72%, akurasi volume yang dihasilkan sebesar 97,8-99,97% dari set volume yang ditetapkan dengan akurasi volume terbaca terhadap hasil uji VT gas flow analyzer sebesar 97,72-99,84%, akurasi pembacaan Peak Inspiratory Pressure (PIP) sebesar 97,77% dan akurasi deteksi usaha napas pasien 99,89%.
Kata kunci: Mode SIMV, PEEP, PIP, Ventilator
ABSTRACT
Respiratory failure occurs when the respiratory system is unable to maintain adequate oxygen levels in the blood, either with or without carbon dioxide accumulation. A ventilator is a device that supports the breathing of someone who is experiencing respiratory failure. Regulating the breathing rhythm by a machine is often felt uncomfortable by conscious patients, so synchronization is needed between the patient's breathing rhythm and the machine. We have developed a ventilator called COVENT to overcome this problem. In this article, we report the results of ventilator performance tests in Synchronized Intermittent Mandatory Ventilation (SIMV) mode. The results of the research were tested using a VT gas flow analyzer, the accuracy of the Positive End Expiratory Pressure (PEEP) reading was 98.72%, the resulting volume accuracy was 97.8-99.97% of the set volume determined with the accuracy of the volume read against the VT test results analyzer was 97.72-99.84%, the accuracy of the Peak Inspiratory Pressure (PIP) reading was 97.77% and the accuracy of detecting the patient's respiratory effort was 99.89%.
Keywords: PEEP, PIP, SIMV Mode, Ventilator
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Abubakar, K. M., & Keszler, M. (2001). Patient-ventilator interactions in new modes of patienttriggered ventilation. Pediatric Pulmonology, 32(1), 71–75. https://doi.org/10.1002/ppul.1091
AG, S. (2023). SFM3300-AW-Proximal flow sensor for respiratory devices, reusable, 250 slm. Sensirion AG. https://www.sensirion.com/products/catalog/SFM3300-AW
Arifin. (2019). Mode Dan Setting Dasar Ventilator. https://www.papdi.or.id/pdfs/758/dr%20Arifin%20%20ventilasi%20mekanik%20(PIN%20surabaya%20okt%202019).pdf
Basari, Aziz, S. A., Suherman, I. H., Ayunindra, S. R., Hafiz, M. F. A., Marcius, J., & Fikri, N. I. (2024). Program Kontrol Alat Ventilator Covent-20 Portabel (Kementrian Hukum dan Hak Asasi Manusia Patent EC00202410479). https://pdkiindonesia. dgip.go.id/detail/077d840e2b22a856f8077d20ce905f1692b7b63f826acc899ba757589a031804?nomor=EC00202410479&type=copyright&keyword=covent
Clark, M. S., & Brunick, A. L. (2015). 8—Anatomy and Physiology of Respiration and Airway Management. Dalam M. S. Clark & A. L. Brunick (Ed.), Handbook of Nitrous Oxide and Oxygen Sedation (Fourth Edition) (hlm. 78–89). Mosby. https://doi.org/10.1016/B978-1-4557-4547-0.00008-6
CNN, I. (2020, Mei 14). Ventilator Darurat Buatan RI Diproduksi, Bantu Pasien Corona. CNN Indonesia. https://www.cnnindonesia.com/teknologi/20200514065156-199-503147/ventilator-darurat-buatan-ri-diproduksi-bantu-pasien-corona
Crimi, C., Pierucci, P., Renda, T., Pisani, L., & Carlucci, A. (2022). High-Flow Nasal Cannula and COVID-19: A Clinical Review. Respiratory Care, 67(2), 227–240. https://doi.org/10.4187/respcare.09056
Darwood, A., McCanny, J., Kwasnicki, R., Martin, B., & Jones, P. (2019). The design and evaluation of a novel low-cost portable ventilator. Anaesthesia, 74(11), 1406–1415. https://doi.org/10.1111/anae.14726
Dewi, D. A. M. S. (2017). Diagnosis Dan Penatalaksanaan Gagal Nafas Akut [Universitas Udayana]. https://simdos.unud.ac.id/uploads/file_penelitian_1_dir/a3094ca3eede2196d8bdb1a6 fffc6b2c.pdf
Ding, B., Xu, F., Wang, J., Pan, C., Pang, J., Chen, Y., & Li, K. (2023). Design and evaluation of portable emergency ventilator prototype with novel titration methods. Biomedical Signal Processing and Control, 83, 104619. https://doi.org/10.1016/j.bspc.2023.104619
Donn, S. M., & Sinha, S. K. (2006). Chapter 27—Synchronized Intermittent Mandatory Ventilation. Dalam S. M. Donn & S. K. Sinha (Ed.), Manual of Neonatal Respiratory Care (Second Edition) (hlm. 200–202). Mosby. https://doi.org/10.1016/B978-032303176-9.50032-5
Elezkurtaj, S., Greuel, S., Ihlow, J., Michaelis, E. G., Bischoff, P., Kunze, C. A., Sinn, B. V., Gerhold, M., Hauptmann, K., Ingold-Heppner, B., Miller, F., Herbst, H., Corman, V. M., Martin, H., Radbruch, H., Heppner, F. L., & Horst, D. (2021). Causes of death and comorbidities in hospitalized patients with COVID-19. Scientific Reports, 11(1), 4263. https://doi.org/10.1038/s41598-021-82862-5
Goulet, R., Hess, D., & Kacmarek, R. M. (1997). Pressure vs Flow Triggering During Pressure Support Ventilation. CHEST, 111(6), 1649–1653. https://doi.org/10.1378/chest.111.6.1649
Greenough, A. (2001). Update on Patient-Triggered Ventilation. Clinics in Perinatology, 28(3), 533–546. https://doi.org/10.1016/S0095-5108(05)70105-6
Heni Puji Wahyuningsih, S. S., & DR Yuni Kusmiyati., M. P. H. (2017). ANATOMI FISIOLOGI. Kementrian Kesehatan RI. https://eprints.triatmamulya.ac.id/1511/
Laghi, F., & Tobin, M. J. (2003). Disorders of the Respiratory Muscles. American Journal of Respiratory and Critical Care Medicine, 168(1), 10–48. https://doi.org/10.1164/rccm.2206020
Microelectronics, S. (2023). STM32 Microcontrollers (MCUs)—STMicroelectronics. https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortexmcus.html
Patwa, A., & Shah, A. (2015). Anatomy and physiology of respiratory system relevant to anaesthesia. Indian Journal of Anaesthesia, 59(9), 533. https://doi.org/10.4103/0019- 5049.165849
Prause, G., Zoidl, P., & Zajic, P. (2021). Hyperventilation is uncommon during cardiopulmonary resuscitation: A preliminary observational study. Resuscitation, 162, 257–258. https://doi.org/10.1016/j.resuscitation.2021.03.008
Rahmanti, N. A. (2021). Manajemen Keselamatan Pasien Kritis (1 ed.). EUREKA MEDIA AKSARA. https://repository.penerbiteureka.com/media/publications/351959-manajemen-keselamatan-pasien-kritis-9ef93f73.pdf
Ruberto, F., Bergantino, B., Testa, M. C., D'Arena, C., Bernardinetti, M., Diso, D., Giacomo, T. D., Venuta, F., & Pugliese, F. (2015). Low-Flow Veno-Venous Extracorporeal CO2 Removal: First Clinical Experience in Lung Transplant Recipients. The International Journal of Artificial Organs. https://doi.org/10.5301/ijao.5000375
Selva-OCallaghan, A., Sanchez-Sitjes, L., Munoz-Gall, X., Mijares-Boeckh-Behrens, T., Solans-Laque, R., Angel Bosch-Gil, J., Morell-Brotad, F., & Vilardell-Tarres, M. (2000). Respiratory failure due to muscle weakness in inflammatory myopathies: Maintenanceetherapy with home mechanical ventilation. Rheumatology, 39(8), 914–916. https://doi.org/10.1093/rheumatology/39.8.914
Semiconductors, N. (2024). MPX5010-MPXV5010-MPVZ5010 Integrated silicon pressure sensor on-chip signal conditioned,. NXP Semiconductors. https://www.nxp.com/docs/en/data-sheet/MPX5010.pdf
Shelledy, D. C., Rau, J. L., & Thomas-Goodfellow, L. (1995). A comparison of the effects of assist-control, SIMV, and SIMV with pressure support on ventilation, oxygen consumption, and ventilatory equivalent. Heart & Lung: The Journal of Cardiopulmonary and Acute Care, 24(1), 67–75. https://doi.org/10.1016/S0147-9563(05)80097-4
Singer, M., Young, P. J., Laffey, J. G., Asfar, P., Taccone, F. S., Skrifvars, M. B., Meyhoff, C. S., & Radermacher, P. (2021). Dangers of hyperoxia. Critical Care, 25(1), 440. https://doi.org/10.1186/s13054-021-03815-y
Storoni, S., Treurniet, S., Micha, D., Celli, M., Bugiani, M., van den Aardweg, J. G., & Eekhoff, E. M. W. (2021). Pathophysiology of respiratory failure in patients with osteogenesis imperfecta: A systematic review. Annals of Medicine, 53(1), 1676–1687. https://doi.org/10.1080/07853890.2021.1980819
Subira, C., Hernandez, G., Vazquez, A., Rodriguez-Garcia, R., Gonzalez-Castro, A., Garcia, C., Rubio, O., Ventura, L., Lopez, A., de la Torre, M. C., Keough, E., Arauzo, V., Hermosa, C., Sanchez, C., Tizon, A., Tenza, E., Laborda, C., Cabanes, S., Lacueva, V., Fernandez, R. (2019). Effect of Pressure Support vs T-Piece Ventilation Strategies During Spontaneous Breathing Trials on Successful Extubation Among Patients Receiving Mechanical Ventilation: A Randomized Clinical Trial. JAMA, 321(22), 2175–2182. https://doi.org/10.1001/jama.2019.7234
Teixeira, S. N., Osaku, E. F., Costa, C. R. L. de M., Toccolini, B. F., Costa, N. L., Cândia, M. F., Leite, M. A., Jorge, A. C., & Duarte, P. A. D. (2015). Comparison of Proportional Assist Ventilation Plus, T-Tube Ventilation, and Pressure Support Ventilation as Spontaneous Breathing Trials for Extubation: A Randomized Study. Respiratory Care, 60(11), 1527–1535. https://doi.org/10.4187/respcare.03915
Thomas, P. J. (2015). The effect of mechanical ventilator settings during ventilator hyperinflation techniques: A bench-top analysis. Anaesthesia and Intensive Care, 43(1), 81–87. https://doi.org/10.1177/0310057X1504300112
Thomas, P., & Paratz, J. (2023). Ventilator hyperinflation – what settings generate an expiratory flow rate bias? Physiotherapy, 119, 44–53. https://doi.org/10.1016/j.physio.2022.11.006
DOI: https://doi.org/10.26760/elkomika.v12i3.656
Refbacks
- There are currently no refbacks.
_______________________________________________________________________________________________________________________
ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638
Publisher:
Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia
Address: 20th Building Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia
Contact: +627272215 (ext. 206)
Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.