Analisis Fleksibilitas Sistem Tenaga Listrik Jawa, Madura, dan Bali karena Integrasi yang Masif dari Pembangkit VRE

DWI CAHYA AGUNG SAPUTRA, IWA GARNIWA

Abstract


ABSTRAK

Integrasi Variable Renewable Energy (VRE), dengan karakteristik intermittent dan ketidakpastian yang tinggi, yang masif ke sistem JAMALI berpotensi mengganggu keandalan dan meningkatkan kompleksitas operasional sistem tenaga listrik. Kendala-kendala tersebut dapat dimitigasi apabila sistem memiliki fleksibilitas yang memadai. Analisis fleksibilitas, dengan bantuan IRENA FlexTool, dilakukan untuk mengkaji fleksibilitas sistem akibat meningkatnya bauran VRE di sistem JAMALI yang dilakukan secara bertahap, yaitu 5% di tahun 2030, 37% di tahun 2040, dan 52% di tahun 2050. Dari hasil analisis, semakin besar bauran VRE dalam sistem JAMALI, kemampuan fleksibilitas sistem semakin menurun. Hal ini ditandai dengan kapabilitas upward ramping yang cenderung turun dari 28,78 GW/jam di tahun 2030 menjadi 25,87 GW/jam di tahun 2050. Serta, terjadinya pembatasan VRE sebesar 706,62 MW dan kehilangan beban hingga 109,79 TWh di tahun 2050.

Kata kunci: fleksibilitas, jamali, kehilangan beban, pembatasan, sistem tenaga listrik, variable renewable energy

 

ABSTRACT

The integration of Variable Renewable Energy (VRE) into the JAMALI power system, characterized by intermittency and high uncertainty, has the potential to disrupt reliability and increase the operational complexity of the power system. These challenges can be mitigated if the power systems possess adequate flexibility. A flexibility analysis, with the assistance of the IRENA FlexTool, was carried out to to assess the system flexibility due to the increasing share of VRE in the JAMALI power system, phased as follows 5% in 2030, 37% in 2040, and 52% in 2050. Based on the analysis results, it is observed that the greater the share of VRE in the JAMALI power system the lower the power system’s flexibility. This is evidenced by an upward ramping capability which tends to decrease from 28.78 GW/hour in 2030 to 25.87 GW/hour in 2050. Also, there is a VRE curtailment of 706.62 MW and a loss of load of up to 109.79 TWh in 2050.

Keywords: curtailment, flexibility, jamali, loss of load, power system, variable renewable energy


Keywords


fleksibilitas, jamali; kehilangan beban; pembatasan; sistem tenaga listrik; variable renewable energy

References


Billanes, J. D., Ma, Z., & Jørgensen, B. N. (2017). Energy Flexibility in the Power System: Challenges and Opportunities in Philippines. Journal of Energy and Power Engineering, 11(9). https://doi.org/10.17265/1934-8975/2017.09.005

Bloomberg. (2022). Japan’s Costly Ammonia Coal Co-Firing Strategy.

Cohran, J., Miller, M., Zinaman, O., Milligan, M., Arent, D., Palmintier, B., O’Malley, M., Mueller, S., Lannoye, E., Tuohy, A., Kujala, B., Sommer, M., Holttinen, H., Kiviluoma, J., & Soonee, S. K. (2014). Flexibility in 21st Century Power Systems.

Correia, D. L. (2020). Portugal’s Route to Neutrality: The Challenge of High Shares of Variable Renewable Energy. Nova School of Business and Economics.

Danish Energy Agency, & Direktorat Jenderal Ketenagalistrikan, K. E. dan S. D. M. (2021). Technology Data for the Indonesian Power Sector Catalogue for Generation and Storage of Electricity.

Danish Energy Agency, & Kementerian Energi dan Sumber Daya Mineral. (2021). Renewable Energy Pipeline.

Direktorat Jenderal Ketenagalistrikan, K. E. dan S. D. M. (2023). Draft Rencana Umum Ketenagalistrikan Nasional 2023-2060.

Eltohamy, M. S., Moteleb, M. S. A., Talaat, H., Mekhemer, S. F., & Omran, W. (2019a). Technical Investigation for Power System Flexibility. 2019 6th International Conference on Advanced Control Circuits and Systems (ACCS) & 2019 5th International Conference on New Paradigms in Electronics & information Technology (PEIT), 299–309. https://doi.org/10.1109/ACCS-PEIT48329.2019.9062862

ENTSOE. (2020). Inertia and Rate of Change of Frequency (RoCoF). ESMAP (Energy Sector Management Assistance Program). (2019). Grid-Integration Requirements for Variable Renewable Energy: Technical Guide. World Bank.

Huang, B., Krishnan, V., & Hodge, B.-M. (2018). Analyzing the Impacts of Variable Renewable Resources on California Net-Load Ramp Events. 2018 IEEE Power & Energy Society General Meeting (PESGM), 1–5. https://doi.org/10.1109/PESGM.2018.8585852

Huber, M., Dimkova, D., & Hamacher, T. (2014). Integration of Wind and Solar Power in Europe: Assessment of Flexibility Requirements. Energy, 69, 236–246. https://doi.org/10.1016/j.energy.2014.02.109

Hubungan Masyarakat Direktorat Jenderal Energi Baru dan Terbarukan dan Konvservasi Energi. (2022). Luncurkan Peta Jalan NZE Sektor Energi Indonesia, Ini Hasil Pemodelan IEA. Direktorat Jenderal Energi Baru dan Terbarukan dan Konservasi Energi, Kementerian Energi dan Sumber Daya Mineral. https://ebtke.esdm.go.id/post/2022/09/05/3252/luncurkan.peta.jalan.nze.sektor.energi.indonesia.ini.hasil.pemodelan.iea?lang=en

Indriani, N., & Garniwa, I. (2022). Optimasi Battery Energy Storage System Dalam Mengatasi Renewable Energy Intermittency dan Load Leveling. Jurnal Teknik Elektro dan Komputasi (ELKOM), 4(1), 11–20. https://doi.org/10.32528/elkom.v4i1.7216

International Energy Agency. (2022, Januari 21). Scaling Up Renewables in the Java-Bali Power System: A Case Study. https://www.iea.org/articles/scaling-up-renewables-in-the-javabali-power-system-a-case-study

International Renewable Energy Agency. (2018a). Power System Flexibility for the Energy Transition Part 1: Overview for Policy Makers. International Renewable Energy Agency. www.irena.org

International Renewable Energy Agency. (2018b). Power System Flexibility for the Energy Transition, Part 2: IRENA FlexTool Methodology. International Renewable Energy Agency. www.irena.org

International Renewable Energy Agency. (2019). Innovation Landscape for a Renewable-Powered Future: Solutions to Integrate Variable Renewables. International Renewable Energy Agency. www.irena.org/publications

Ismail, -, Ismail, A. H., & Nur Rahayu, G. H. N. (2020). Wind Energy Feasibility Study of Seven Potential Locations in Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 10(5), 1970–1978. https://doi.org/10.18517/ijaseit.10.5.10389

Kanugrahan, S. P., Hakam, D. F., & Nugraha, H. (2022). Techno-Economic Analysis of Indonesia Power Generation Expansion to Achieve Economic Sustainability and Net Zero Carbon 2050. Sustainability (Switzerland), 14(15). https://doi.org/10.3390/su14159038

Lannoye, E., Flynn, D., & O’malley, M. (2012). Evaluation of Power System Flexibility. IEEE Transactions on Power Systems, 27(2), 922–931. https://doi.org/https://doi.org/10.1109/TPWRS.2011.2177280

Lin, J., & Magnago, F. H. (2017). Electricity Markets: Theories and Applications. John Wiley & Sons, Inc.

Mohandes, B., Moursi, M. S. El, Hatziargyriou, N., & Khatib, S. El. (2019). A Review of Power System Flexibility with High Penetration of Renewables. IEEE Transactions on Power Systems, 34(4), 3140–3155. https://doi.org/10.1109/TPWRS.2019.2897727

Pandzic, H. (2022). Flexibility in Power Systems. Rad Hrvatske akademije znanosti i umjetnosti. Tehnicke znanosti, 21, 61–80. https://doi.org/10.21857/mzvkptq359

Premono, B. S., Tjahjana, D. D. D. P., & Hadi, S. (2017). Wind Energy Potential Assessment to Estimate Performance of Selected Wind Turbine in Northern Coastal Region of Semarang-Indonesia. AIP Conference Proceedings, 1788(1), 030026. https://doi.org/10.1063/1.4968279

PT Perusahaan Listrik Negara (Persero). (2021). Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) 2021-2030.

Sarjiya, Putranto, L. M., Isnaini, M. B. S., Rosyied, M. A., Lukhyswara, P., Aditya, F. M. R., Pramono, E. Y., & Isnandar, S. (2018). Wind and Solar Power Plant Modelling and Its Impact to the Jawa-Bali Power Grid. 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 274–279. https://doi.org/10.1109/APPEEC.2018.8566584

Silalahi, D. F., Blakers, A., Lu, B., & Cheng, C. (2022). Indonesia’s Vast Off-River Pumped Hydro Energy Storage Potential. Energies, 15(9). https://doi.org/10.3390/en15093457

Tambunan, H. B., Hakam, D. F., Prahastono, I., Pharmatrisanti, A., Purnomoadi, A. P., Aisyah, S., Wicakson, Y., & Sandy, I. G. R. (2020). The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System. Energies, 13(22). https://doi.org/10.3390/en13225903

Xing, T., Caijuan, Q., Liang, Z., Pengjiang, G., Jianfeng, G., & Panlong, J. (2017). A Comprehensive Flexibility Optimization Strategy on Power System with High Percentage Renewable Energy. 2nd International Conference on Power and Renewable Energy, 553–558. https://doi.org/10.1109/ICPRE.2017.8390596

Yan, X., Jiang, H., Gao, Y., Li, J., & Abbes, D. (2020). Practical Flexibility Analysis on Europe Power System with High Penetration of Variable Renewable Energy. iSPEC 2020 - Proceedings: IEEE Sustainable Power and Energy Conference: Energy Transition and Energy Internet, 395–402. https://doi.org/10.1109/iSPEC50848.2020.9351168




DOI: https://doi.org/10.26760/elkomika.v12i3.640

Refbacks

  • There are currently no refbacks.


_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License