Klasifikasi Status Tekanan Darah memanfaatkan Sinyal Photoplethysmograph berbasis Metode Random Forest

UNANG SUNARYA, LYRA VEGA UGI

Abstract


ABSTRAK

Berbagai teknik pengukuran tekanan darah telah banyak dilakukan salah satunya melalui metode tidak langsung (noninvasive) dengan pemasangan sensor-sensor pada bagian tubuh tertentu, kemudian hasilnya dianalisis dengan algoritma kecerdasan buatan. Namun, masih terdapat banyak kendala pada pemilihan algoritma yang tepat untuk mencapai hasil akurasi klasifikasi yang tinggi. Pada penelitian ini dilakukan klasifikasi status tekanan darah dengan menggunakan sinyal photoplethysmograph (PPG) yang pengukurannya dilakukan secara noninvasive dari 219 pasien. Algoritma random forest digunakan untuk mengklasifikasikan status pasien ke dalam empat kelas yaitu normal, prehypertension, stage 1 prehypertension dan stage 2 prehypertension. Untuk perbandingan, dataset juga diklasifikasikan dengan algoritma KNN dan SVM. Hasil menunjukkan bahwa algoritma random forest memberikan kinerja terbaik dengan akurasi sebesar 98,63%, presisi 98,72% dan recall 98.60%.

Kata kunci: tekanan darah, CVD, random forest, KNN, SVM

 

ABSTRACT

Various ways for measuring blood pressure have been employed, including noninvasive techniques that include placing senosrs on specific body areas and analyzing the finding using artificial intelligence algorithms. Nevertheless, there are numerous challenges in choosing the appropriate algorithms that yiled high accuracy in classification. In this study, blood pressure status was classified using photoplethysmograph (PPG) signals, which were measured non-invasively from 219 patients. The random forest algorithm was used to classify patient status into four classes, namely normal, prehypertension, prehypertension stage 1 and prehypertension stage 2. For comparison, the dataset was also classified using the KNN and SVM algorithms. The results show that the random forest algorithm provides the best performance with an accuracy of 98.63%, precision of 98.72% and recall of 98.60%, respectively.

Keywords: blood pressure, CVD, random forest, KNN, SVM


Keywords


tekanan darah; CVD; random forest; KNN; SVM

References


Begg, R. K., Palaniswami, M., & Owen, B. (2005). Support vector Machines for Automated Gait Classification. IEEE Transactions on Biomedical Engineering, 52(5), 828–838. https://doi.org/10.1109/TBME.2005.845241

Bibbo, D., Kijonka, J., Kudrna, P., Penhaker, M., Vavra, P., & Zonca, P. (2020). Design and development of a novel invasive blood pressure simulator for patient’s monitor testing. Sensors (Switzerland), 20(1). https://doi.org/10.3390/s20010259

Chung, E., Chen, G., Alexander, B., & Cannesson, M. (2013). Non-invasive continuous blood pressure monitoring: A review of current applications. Frontiers of Medicine in China, 7(1), 91–101. Higher Education Press Limited Company. https://doi.org/10.1007/s11684-013-0239-5

Dal Pont, M. P., & Marques, J. L. B. (2020). Reflective Photoplethysmography Acquisition Platform With Monitoring Modules and Noninvasive Blood Pressure Calculation. IEEE Transactions on Instrumentation and Measurement, 69(8), 5649–5657. https://doi.org/10.1109/TIM.2019.2963508

Drozdz, D., & Kawecka-Jaszcz, K. (2014). Cardiovascular changes during chronic hypertensive states. Pediatric nephrology (Berlin, Germany), 29(9), 1507–1516. https://doi.org/10.1007/s00467-013-2614-5

Eshaghi, F., Aghdam, E. N., & Kassiri, H. (2020). A Resource-Optimized Patient-Specific Nonlinear-SVM Hypertension Detection Algorithm for Minimally-Invasive High Blood Pressure Control. 2020 IEEE International Symposium on Circuits and Systems (ISCAS), (pp. 1–5). https://doi.org/10.1109/ISCAS45731.2020.9180433

Fortin, J., Rogge, D. E., Fellner, C., Flotzinger, D., Grond, J., Lerche, K., & Saugel, B. (2021). A novel art of continuous noninvasive blood pressure measurement. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21271-8

Hendrayana, Y. H., & Agus Riyadi, M. (2016). Rancang Bangun Alat Pengukur Tekanan Darah Otomatis Menggunakan Metode Oscillometry Berbasis Raspberry Pi Model B+. Transmisi 18(1)

Kaur, B., Kaur, S., Yaddanapudi, L. N., & Singh, N. V. (2019). Comparison between invasive and noninvasive blood pressure measurements in critically ill patients receiving inotropes. Blood Pressure Monitoring, 24(1), 24–29. https://doi.org/10.1097/MBP. 0000000000000358

Kishi, T. (2020). Heart rate Is the Clinical Indicator of Sympathetic Activation and Prognostic Value of Cardiovascular Risks in Patients With Hypertension. Hypertension, 76(2), 323–324. https://doi.org/10.1161/HYPERTENSIONAHA.120.14898

Lee, D., Kwon, H., Son, D., Eom, H., Park, C., Lim, Y., Seo, C., & Park, K. (2021). Beat-to-beat continuous blood pressure estimation using bidirectional long short-term memory network. Sensors (Switzerland), 21(1), 1–15. MDPI AG. https://doi.org/10.3390/s21010096

Liang, Y., Chen, Z., Liu, G., & Elgendi, M. (2018). A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in China. Scientific Data, 5. https://doi.org/10.1038/sdata.2018.20

Mills, K. T., Stefanescu, A., & He, J. (2020). The global epidemiology of hypertension. Nature Reviews Nephrology, 16(4), 223–237. https://doi.org/10.1038/s41581-019-0244-2

Mrowka, R. (2020). Recent advances in blood pressure research. Acta Physiologica, 228(1). Blackwell Publishing Ltd. https://doi.org/10.1111/apha.13412

Olson, D. L., & Delen, Dursun. (2008). Advanced data mining techniques. Springer.

P., P. J. (1970). The Direct and Indirect Measurement of Blood Pressure. Journal of The Royal Naval Medical Service, 56(3), 289.6-290. https://doi.org/10.1136/jrnms-56-289e

Panagoulias, D. P., Sotiropoulos, D. N., & Tsihrintzis, G. A. (2022). SVM-Based Blood Exam Classification for Predicting Defining Factors in Metabolic Syndrome Diagnosis. Electronics (Switzerland), 11(6). https://doi.org/10.3390/electronics11060857

Raschka, Sebastian., & Mirjalili, Vahid. (2017). Python machine learning: machine learning and deep learning with Python, scikit-learn, and TensorFlow. Packt Publishing.

Saheera, S., & Krishnamurthy, P. (2020). Cardiovascular Changes Associated with Hypertensive Heart Disease and Aging. Cell Transplantation, 29. SAGE Publications Ltd. https://doi.org/10.1177/0963689720920830

Senturk, U., Yucedag, I., & Polat, K. (2018). Cuff-less continuous blood pressure estimation from Electrocardiogram(ECG) and Photoplethysmography (PPG) signals with artificial neural network. 2018 26th Signal Processing and Communications Applications Conference (SIU), 1–4. https://doi.org/10.1109/SIU.2018.8404255

Shaikh, M. R., Rao, M., & Subramaniam, G. (2023). A Novel Thermal Imaging Based Transfer-Learning Model To Estimate Blood Pressure. 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), 2023-April, (pp. 1–5). https://doi.org/10.1109/ISBI53787.2023.10230787

Sunarya, U., & Haryanti, T. (2022). Perbandingan Kinerja Algoritma Optimasi pada Metode Random Forest untuk Deteksi Kegagalan Jantung. Jurnal Rekayasa Elektrika, 18(4). https://doi.org/10.17529/jre.v18i4.26981

Tadic, M., Cuspidi, C., & Grassi, G. (2018). Heart rate as a predictor of cardiovascular risk. European Journal of Clinical Investigation, 48(3). https://doi.org/10.1111/eci.12892

Wang, R., Jia, W., Mao, Z. H., Sclabassi, R. J., & Sun, M. (2014). Cuff-free blood pressure estimation using pulse transit time and heart rate. International Conference on Signal Processing Proceedings, ICSP, 2015-January(October), (pp. 115–118). https://doi.org/10.1109/ICOSP.2014.7014980

Wang, W., Mohseni, P., Kilgore, K. L., & Najafizadeh, L. (2022). Cuff-Less Blood Pressure Estimation From Photoplethysmography via Visibility Graph and Transfer Learning. IEEE Journal of Biomedical and Health Informatics, 26(5), 2075–2085. https://doi.org/10.1109/JBHI.2021.3128383

World Health Organization. (2024, January 30). Blood Pressure. Retrivied from www.who.int

Yang, G., Dai, J., Liu, X., Chen, M., & Wu, X. (2020). Spectral feature extraction based on continuous wavelet transform and image segmentation for peak detection. Analytical Methods, 12(2), 169–178. https://doi.org/10.1039/C9AY02052G




DOI: https://doi.org/10.26760/elkomika.v12i3.687

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License