Prediksi Kanker Paru menggunakan Grid search untuk Optimasi Hyperparameter pada Algoritma MLP dan Logistic Regression

NOR KUMALASARI CAECAR PRATIWI, NUR IBRAHIM, SOFIA SAIDAH

Abstract


ABSTRAK

Kanker paru merupakan penyebab utama kematian akibat kanker di seluruh dunia. Prediksi dini kanker paru-paru telah banyak dilakukan, baik berbasis citra maupun data mentah. Prediksi kanker paru berbasis citra memberikan dampak positif dalam diagnosis dini, namun pendekatan berbasis data mentah juga penting dalam memahami faktor risiko dan kondisi yang dapat mempengaruhi perkembangan kanker. Penelitian ini mengusulkan sistem prediksi dini kanker paru dengan basis data klinis dan demografi, menggunakan Multi-Layer Perceptron (MLP) dan logistic regression dengan pemanfaatan grid search optimizer. Kedua model mencapai tingkat akurasi, presisi, recall, dan f1-score sebesar 1, optimal dalam melakukan prediksi data. Pada logistic regression, solver liblinear, penalty L1, dan nilai C yang lebih tinggi berkontribusi pada peningkatan akurasi. Sedangkan pada MLP, konfigurasi aktivasi tanh dan solver adam menghasilkan akurasi yang lebih baik. Hasil ini memberikan keyakinan implementasi MLP dan logistic regression, memiliki potensi dalam mendukung prediksi kanker paru-paru.

Kata kunci: kanker paru, multi-layer perceptron, logistic regression, grid search

 

ABSTRACT

Lung cancer is a leading cause of cancer-related deaths worldwide. Early prediction of lung cancer has been widely conducted, both based on images and raw data. Image-based lung cancer prediction has a positive impact on early diagnosis, but a raw data-driven approach is also crucial for understanding risk factors and conditions that can influence cancer development. This research proposes an early lung cancer prediction system using clinical and demographic data, employing Multi-Layer Perceptron (MLP) and logistic regression with the utilization of grid search. Both models achieved an accuracy, precision, recall, and f1-score of 1, optimal in classifying data. In logistic regression, the liblinear solver, L1 penalty, and higher C values contributed to increased accuracy. Meanwhile, in MLP, the configuration of tanh activation and adam solver yielded better accuracy. These
results instill confidence that the implementation of MLP and logistic regression has significant potential in supporting lung cancer prediction.

Keywords: lung cancer, multi-layer perceptron, logistic regression, grid search


Keywords


kanker paru; multi-layer perceptron; logistic regression; grid search

References


Berg, C. D., Schiller, J. H., Boffetta, P., Cai, J., Connolly, C., Kerpel- Fronius, Kitts, A., Lam, A. B., C.L., D., Mohan, A., Myers, R., Suri, T., Tammemagi, M. C., Yang, D., & Lam, S. (2023). Air Pollution and Lung Cancer: A Review by International Association for the Study of Lung Cancer Early Detection and Screening Committee. Journal of Thoracic Oncology, 18(10), 1277–1289.

Biswas, S., Ghosh, S., Roy, S., Bose, R., & Soni, S. (2023). A Study of Stock Market Prediction through Sentiment Analysis. Mapana Journal of Sciences, 22(1), 89–120.

Buana, I., & Harahap, D. A. (2022). Asbestos, Radon Dan Polusi Udara Sebagai Faktor Resiko Kanker Paru Pada Perempuan Bukan Perokok. AVERROUS: Jurnal Kedokteran dan Kesehatan Malikussaleh, 8(1), 1–16. https://doi.org/10.29103/averrous.v8i1.7088

Deepapriya, B. S., Kumar, P., Nandakumar, G., Gnanavel, S., Padmanaban, R., Anbarasan, A. K., & Meena, K. (2023). Performance evaluation of deep learning techniques for lung cancer prediction. Soft Computing, 27(13), 9191–9198. https://doi.org/10.1007/s00500-023-08313-7

Ge, Y., Ma, L., Tao, L. W., Han, M. F., & Ma, L. M. (2015). Predicting Early Lung Cancer Using Big Data. Annals of Oncology, 26(1), 6–9. https://doi.org/10.1093/annonc/mdv044.04

Kaggle. (n.d.). Lung Cancer Prediction Dataset. Diambil 6 Januari 2023, dari https://www.kaggle.com/datasets/thedevastator/cancer-patients-and-air-pollution-anew-link?select=cancer+patient+data+sets.csv

Kanwal, M., Ding, X. J., & Cao, Y. (2017). Familial risk for lung cancer. Oncology Letters, 13(2), 535–542. https://doi.org/10.3892/ol.2016.5518

Ledford, H. (2023). How air pollution causes lung cancer - without harming DNA. Nature, 616(7957), 419–420. https://doi.org/10.1038/d41586-023-00989-z

Lehto, R. H. (2016). Symptom burden in lung cancer: management updates. Lung Cancer Management, 5(2), 61–78. https://doi.org/10.2217/lmt-2016-0001

Li, C., Lei, S., Ding, L., Xu, Y., Wu, X., Wang, H., Zhang, Z., Gao, T., Zhang, Y., & Li, L. (2023). Global burden and trends of lung cancer incidence and mortality. Chinese Medical Journal, 136(13), 1583–1590. https://doi.org/10.1097/CM9.0000000000002529

Munawar, Z., Ahmad, F., Awadh Alanazi, S., Nisar, K. S., Khalid, M., Anwar, M., & Murtaza, K. (2022). Predicting the prevalence of lung cancer using feature transformation techniques. Egyptian Informatics Journal, 23(4), 109–120. https://doi.org/10.1016/j.eij.2022.08.002

Nageswaran, S., Arunkumar, G., Bisht, A. K., Mewada, S., Kumar, J. N. V. R. S., Jawarneh, M., & Asenso, E. (2022). Lung Cancer Classification and Prediction Using Machine Learning and Image Processing. BioMed Research International, 2022, 1–8. https://doi.org/10.1155/2022/1755460

Nemlander, E., Rosenblad, A., Abedi, E., Ekman, S., Hasselström, J., Eriksson, L. E., & Carlsson, A. C. (2022). Lung cancer prediction using machine learning on data from a symptom e-questionnaire for never smokers, formers smokers and current smokers. PLoS ONE, 17(10), 1–11. https://doi.org/10.1371/journal.pone.0276703

Panjaitan, C., Silaban, A., Napitupulu, M., & Simatupang, J. W. (2018). Comparison K-nearest neighbors (K-NN) and artificial neural network (ANN) in real time entrants recognition. 2018 International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2018, 1–4. https://doi.org/10.1109/ISRITI.2018.8864366

Prado, M. G., Kessler, L. G., Au, M. A., Burkhardt, H. A., Zigman Suchsland, M., Kowalski, L., Stephens, K. A., Yetisgen, M., Walter, F. M., Neal, R. D., Lybarger, K., Thompson, C. A., Al Achkar, M., Sarma, E. A., Turner, G., Farjah, F., & Thompson, M. J. (2023). Symptoms and signs of lung cancer prior to diagnosis: Case-control study using electronic health records from ambulatory care within a large US-based tertiary care centre. BMJ Open, 13(4), 1–10. https://doi.org/10.1136/bmjopen-2022-068832

Pratiwi, N. C., Ibrahim, N., Fu’adah, Y. N., & Masykuroh, K. (2020). Computer-Aided Detection (CAD) for COVID-19 based on Chest X-ray Images using Convolutional Neural Network. International Conference on Engineering, Technology and Innovative Researches, 982(1), 1–10. https://doi.org/10.1088/1757-899X/982/1/012004

Rajasekar, V., Vaishnnave, M. P., Premkumar, S., Sarveshwaran, V., & Rangaraaj, V. (2023). Lung cancer disease prediction with CT-scan and histopathological images feature analysis using deep learning techniques. Results in Engineering, 18, 1–9. https://doi.org/10.1016/j.rineng.2023.101111

Shanbhag, G. A., Prabhu, K. A., Reddy, N. V. S., & Rao, B. A. (2022). Prediction of Lung Cancer using Ensemble Classifiers. Journal of Physics: Conference Series, 2161, 1–11. https://doi.org/10.1088/1742-6596/2161/1/012007

Shirazi, A. S., & Frigaard, I. (2021). Slurrynet: Predicting critical velocities and frictional pressure drops in oilfield suspension flows. Energies, 14(5), 1–21. https://doi.org/10.3390/en14051263

Troche, J. R., Mayne, S. T., Freedman, N. D., Shebl, F. M., & Abnet, C. C. (2016). The Association between Alcohol Consumption and Lung Carcinoma by Histological Subtype. American Journal of Epidemiology, 183(2), 110–121.

Vedire, Y., Kalvapudi, S., & Yendamuri, S. (2023). Obesity and lung cancer—a narrative review. Journal of Thoracic Disease, 15(5), 2806–2823. https://doi.org/10.21037/jtd-22-1835




DOI: https://doi.org/10.26760/elkomika.v12i3.556

Refbacks

  • There are currently no refbacks.


_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License