Penerapan Algoritma Gradient Boosting pada Sinyal EEG sebagai Pengendali Kursi Roda

GERARLDO INDRA DARMAWAN, ERWANI MERRY SARTIKA, ERIC CHANDRA, NOVIE THERESIA BR. PASARIBU, HERI ANDRIANTO

Abstract


ABSTRAK

Berdasarkan data Badan Penduduk Statistik (BPS) tahun 2019, jumlah penduduk lanjut usia yaitu 23,4 juta dan 26,2% diantaranya mengalami keluhan kesehatan. Beberapa keluhan kesehatan yang dialami berkaitan dengan mobilitas. Kursi roda merupakan salah satu alat bantu yang kerap digunakan oleh penyandang disabilitas atau seseorang yang memiliki keterbatasan mobilitas. Brain-Computer Interface digunakan sebagai sistem kendali kursi roda menggunakan Raspberry Pi berdasarkan masukan berupa sinyal EEG. Sinyal EEG tersebut digunakan untuk memprediksi perintah otak dan rangsangan gerakan bola mata dengan menerapkan algoritma gradient boosting. Hasil prediksi machine learning merupakan set point untuk menjalankan motor DC sehingga kursi roda dapat bergerak berdasarkan hasil prediksi. Sistem BCI pada kursi roda telah dilakukan uji coba, integrasi BCI pada kursi roda berhasil diterapkan dengan persentase keberhasilan sebesar 60%.

Kata kunci: BCI, Machine Learning, Wheelchair Control.

 

ABSTRACT

According to the Badan Penduduk Statistik 2019, the number of elderly population is 23.4 million, and 26.2% of them experience health complaints. Some of these complaints are related to mobility. Wheelchairs are one of the commonly used aids for people with disabilities or mobility limitations. The Brain-Computer Interface (BCI) is employed as a control system for a wheelchair, utilizing a Raspberry Pi, which operates based on input signals derived from EEG (Electroencephalogram) signals. These EEG signals are used to predict brain commands and stimulate eye movement through the application of gradient boosting algorithms. The machine learning prediction results are the set points to run the DC motor so that the wheelchair can move based on the prediction results. The BCI system for wheelchairs has been tested, and the integration of BCI into wheelchairs has been successfully applied with a 60% success rate.

Keywords: BCI, Machine Learning, Wheelchair Control.


Keywords


BCI; Machine Learning; Wheelchair Control

References


Ardi, L., Setiawan, N. A., & Wibirama, S. (2021). Eye Blink Classification for Assisting Disability to Communicate Using Bagging and Boosting. IJITEE (International Journal of Information Technology and Electrical Engineering), 5(4), 117. https://doi.org/10.22146/ijitee.63515

Batan, I. M. L. (2006). Pengembangan Kursi Roda sebagai Upaya Peningkatan Ruang Gerak Penderita Cacat Kaki. Jurnal Teknik Industri, 2, 97–105. http://www.petra.ac.id/~puslit/journals/dir.php?DepartmentID=IND

Belkacem, A. N., Jamil, N., Palmer, J. A., Ouhbi, S., & Chen, C. (2020). Brain Computer Interfaces for Improving the Quality of Life of Older Adults and Elderly Patients. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2020.00692

Cicih, L. H. M., & Nugroho, D. N. A. (2021). Kondisi Lanjut Usia Di Indonesia Era Bonus Demografi. Sosio Informa, 7(2), 158–171. https://doi.org/10.33007/inf.v7i2.2681

Fatmawati, E., Prawito, P., & Wijaya, S. K. (2016). Pengembangan Alat Bantu Pemodelan Terapi Lengan Pasca Stroke Dengan Memanfaatkan Sinyal Electroencephalography (Eeg) Menggunakan Emotiv. Prosiding Seminar Nasional Fisika (E-Journal) SNF2016, V, SNF2016-BMP-33-SNF2016-BMP-38. https://doi.org/10.21009/0305020307

Fernandez-Rodriguez, Alvaro, Francisco Velasco-Alvarez, Manon Bonnet-Save, and Ricardo Ron-Angevin. (2018). ‘Evaluation of Switch and Continuous Navigation Paradigms to Command a Brain-Controlled Wheelchair’. Frontiers in Neuroscience 12(6), 1–15.

Jacob Varghese, L., Sira Jacob, S., & Raglend, J. I. (2021). Design and Implementation of aMachine Learning Assisted Smart Wheelchair in an IoT Environment. Springer Wireless Personal Communications, 1. https://doi.org/https://doi.org/10.21203/rs.3.rs-490123/v1

Ji, Y., Hwang, J., & Kim, E. Y. (2013). An Intelligent Wheelchair Using Situation Awareness and Obstacle Detection. Elsevier, Procedia - Social and Behavioral Sciences, 97, 620–628. https://doi.org/10.1016/j.sbspro.2013.10.281

Kanungo, L., Garg, N., Bhobe, A., Rajguru, S., & Baths, V. (2021). Wheelchair Automation by a Hybrid BCI System Using SSVEP and Eye Blinks. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2014, (pp. 411–416). https://doi.org/10.1109/SMC52423.2021.9659266

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, (pp. 3147–3155).

Liu, K., Yu, Y., Liu, Y., Tang, J., Liang, X., & Chu, X. (2022). Kursi roda baru yang dikendalikan otak dikombinasikan dengan visi komputer dan augmented reality. BioMedical Engineering Online, 1–21. https://doi.org/doi.org/10.1186/s12938-022-01020-8

Mansi, S. A., Pigliautile, I., Porcaro, C., Pisello, A. L., & Arnesano, M. (2021). Application of wearable EEG sensors for indoor thermal comfort measurements. Acta IMEKO, 10(4), 214–220. https://doi.org/10.21014/acta_imeko.v10i4.1180

Przegalinska, A., Ciechanowski, L., Magnuski, M., & Gloor, P. (2018). Muse Headband: Measuring Tool or a Collaborative Gadget? Studies on Entrepreneurship, Structural Change and Industrial Dynamics, April 2018, 93–101. https://doi.org/10.1007/978-3-319-74295-3_8

Rashid, M., Sulaiman, N., P. P. Abdul Majeed, A., Musa, R. M., Ahmad, A. F., Bari, B. S., & Khatun, S. (2020). Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review. Frontiers in Neurorobotics, 14(6). https://doi.org/10.3389/fnbot.2020.00025

Sanchez-Cifo, M. A., Montero, F., & Lopez, M. T. (2021). Musestudio: Brain activity data management library for low-cost eeg devices. Applied Sciences (Switzerland), 11(16), 1–20. https://doi.org/10.3390/app11167644

Sharp, R., Swerdlow, N. R., & Braff, D. L. (2011). EEG and ERPs. In NIH Public Access (Issue 619). https://doi.org/10.1002/0471142301.ns0625s52.Electroencephalography

Yasin, S., Hussain, S. A., Aslan, S., Raza, I., Muzammel, M., & Othmani, A. (2021). EEG based Major Depressive disorder and Bipolar disorder detection using Neural Networks:A review. Computer Methods and Programs in Biomedicine, 202(2). https://doi.org/10.1016/j.cmpb.2021.106007




DOI: https://doi.org/10.26760/elkomika.v12i2.541

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License