Kecerdasan Buatan berbasis Geospasial (GeoAI) menggunakan Google Earth Engine untuk Monitoring Fenomena Urban Heat Island di Indonesia

SONI DARMAWAN, NADA NAFISYAH NURULHAKIM, RIKA HERNAWATI

Abstract


ABSTRAK

Fenomena Urban Heat Island (UHI) sangat penting untuk dimonitor agar terjaga kualitas lingkungan perkotaan. Dewasa ini teknologi kecerdasan buatan berbasis geospasial (GeoAI) merupakan teknologi yang menjanjikan untuk mengidentifikasi dan monitoring secara cepat dan efisien suatu kawasan yang luas. Walaupun Kecerdasan buatan sudah banyak diteliti namun GeoAI untuk identifikasi dan monitoring fenomena UHI di Indonesia masih terbatas. Penelitian ini bertujuan untuk membangun sistem GeoAI menggunakan google earth engine untuk monitoring fenomena UHI di Indonesia. Metodologi pada penelitian ini dimulai dari perancangan sistem, penghimpunan data dan komputasi, pembuatan dashboard, pengujian, hingga visualisasi UHI di Indonesia. Hasil penelitian ini berupa sistem aplikasi untuk monitoring fenomena UHI di Indonesia yang divisualisasikan dalam sebuah dashboard menggunakan Earth Engine Apps yang dapat diakses pada tautan https://bit.ly/UHIGDItenas.

Kata kunci: Kecerdasan buatan, Penginderaan jauh dan Geospasial

 

ABSTRACT

Urban Heat Island (UHI) phenomenon is very important to monitor for managing the quality of the urban environment. Recently geospatial-based artificial intelligence (GeoAI) technology is a promising technology for quickly and efficiently identifying and monitoring on the large area. Even though artificial intelligence has been widely researched, GeoAI for identifying and monitoring the UHI phenomenon in Indonesia is still limited. This research aims to build a GeoAI system using the Google Earth engine for monitoring the UHI phenomenon in Indonesia. The methodology in this research starts from system design, data collection and computing, dashboard creation, testing and visualization of UHI in Indonesia. The results of this research are an application system for monitoring the UHI phenomenon in Indonesia which is visualized in a dashboard using Earth Engine Apps which can be accessed on https://bit.ly/UHIGDItenas.

Keywords: Artificial Intelligence, Remote sensing, and Geospatial


Keywords


Kecerdasan buatan; Penginderaan jauh dan Geospasial

References


Al Hakim, M. A. Y., Sasmito, B., & Hadi, F. (2022). Analisis Pola SUHI (Surface Urban Heat Island) Kota Pesisir (Coastal City) Wilayah Pantai Utara Jawa Menggunakan Data Sentinel-3 SLSTR Multitemporal (Studi Kasus: Kabupaten Kendal dan Kabupaten Cirebon). Jurnal Geodesi Undip, 11(3).

Almeida, C. R. de, Furst, L., Gonçalves, A., & Teodoro, A. C. (2022). Remote Sensing Image-Based Analysis of the Urban Heat Island Effect in Bragança, Portugal. Environments - MDPI, 9(8). https://doi.org/10.3390/environments9080098

Alves, E. D. L. (2016). Seasonal and spatial variation of surface urban heat island intensity in a small urban agglomerate in Brazil. Climate, 4(4). https://doi.org/10.3390/cli4040061

Alves, E. D. L., & Lopes, A. (2017). The urban heat island effect and the role of vegetation to address the negative impacts of local climate changes in a small Brazilian City. Atmosphere, 8(2). https://doi.org/10.3390/atmos8020018

Brooke, S. A. S., D’Arcy, M., Mason, P. J., & Whittaker, A. C. (2020). Rapid multispectral data sampling using Google Earth Engine. Computers and Geosciences, 135(December). https://doi.org/10.1016/j.cageo.2019.104366

Chakraborty, T., & Lee, X. (2019). A Simplified Urban-Extent Algorithm to Characterize Surface Urban Heat Islands on a Global Scale and Examine Vegetation Control on Their Spatiotemporal Variability. Application Earth Observation Geoinformation, 74, 269–280.

Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R. R., Bradshaw, R., & Weizenbaum, N. (2010). FlumeJava: Easy, efficient data-parallel pipelines. ACM SIGPLAN Notices, 45(6), 363–375. https://doi.org/10.1145/1809028.1806638

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T., Fikes, A., & Gruber, R. E. (2008). Bigtable: A distributed storage system for structured data. ACM Transactions on Computer Systems, 26(2). https://doi.org/10.1145/1365815.1365816

Cholissodin, I., Sutrisno, Soebroto, A. A., Hasanah, U., & Febiola, Y. I. (2020). AI , Machine Learning & Deep Learning (Teori & Implementasi). Universitas Brawijaya.

Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan, S., … Woodford, D. (2013). Spanner: Google’s globally distributed database. ACM Transactions on Computer Systems, 31(3). https://doi.org/10.1145/2491245

Dan, S., Xu, H., Xue, W., He, J., & Dan, B. (2010). Comparison and analysis of research methods for urban heat island effect based on Landsat TM6. 2010 2nd IITA International Conference on Geoscience and Remote Sensing, IITA-GRS 2010, 1, 161–164. https://doi.org/10.1109/IITA-GRS.2010.5602992

Darlina, S. P., Sasmito, B., & Yuwono, B. D. (2018). Analisis Fenomena Urban Heat Island Serta Mitigasinya (Studi Kasus : Kota Semarang). Jurnal Geodesi Undip, 7(3), 77–87.

Darmawan, S., Hernawati, R., & Abdullah, A. R. (2019). A Correlation Analysis Of The Relationship Between Air Pollution Parameters PM10 With Land Surface Temperature (LST) Based On Landsat 7ETM+ And Landsat 8OLI/TIRS Satellite Images In Bandung City. PROSIDING SEMINAR NASIONAL GEOMATIKA 2019 : “ GEOMATICS SCIENTIFIC MEETING COASTAL MANAGEMENT TO SUPPORT SDG ’ S", 69–78.

Das, S., Sun, Q. (Chayn), & Zhou, H. (2022). GeoAI to implement an individual tree inventory: Framework and application of heat mitigation. Urban Forestry and Urban Greening, 74. https://doi.org/10.1016/j.ufug.2022.127634

Deilami, K., Kamruzzaman, M., & Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, 67(November 2017), 30–42.

Dewan, A., Kiselev, G., Botje, D., Mahmud, G. I., Bhuian, M. H., & Hassan, Q. K. (2021). Surface Urban Heat Island Intensity in Five Major Cities of Bangladesh: Patterns, Drivers and Trends. Sustainable Cities and Society, 71(April).

Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M., & Trigo, I. F. (2020). Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sensing, 12(9), 1–21. https://doi.org/10.3390/RS12091471

Goldblatt, R., Addas, A., Crull, D., Maghrabi, A., Levin, G. G., & Rubinyi, S. (2021). Remotely sensed derived land surface temperature (Lst) as a proxy for air temperature and thermal comfort at a small geographical scale. Land, 10(4). https://doi.org/10.3390/land10040410

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Hermawan, E. (2015). Fenomena Urban Heat Island (UHI) Pada Beberapa Kota Besar Di Indonesia Sebagai Salah Satu Dampak Perubahan Lingkungan Global. Jurnal Citra Widya Edukasi, VII, 33–45.

Hidayat, A., & Fauziyyah, H. M. (2022). Perancangan Desain Antarmuka Aplikasi Pembelajaran Berbasis Mobile Menggunakan Metode Design Thinking. Jurnal Teknik Informatika, 10(1).

Hidayat, A. S. (2020). Penggunaan WebGIS Dalam Analisis Perubahan Urban Heat Island di Kabupaten Bekasi Tahun 2008-2018. Universitas Islam Negeri Syarif Hidayatullah.

Jaya, H., Sabran, Idris, M. M., Djawad, Y. A., Ilham, A., & Ahmar, A. S. (2018). Kecerdasan Buatan (Pertama). Fakultas MIPA Universitas Negeri Makassar.

Kumar, L., & Mutanga, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1–15. https://doi.org/10.3390/rs10101509

Li, K., Chen, Y., Xia, H., Gong, A., & Guo, Z. (2020). Adjustment from Temperature Annual Dynamics for Reconstructing Land Surface Temperature Based on Downscaled Microwave Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5272–5283. https://doi.org/10.1109/JSTARS.2020.3021386

Li, W. (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science, 20(20), 71–77. https://doi.org/10.5311/JOSIS.2020.20.658

Li, W., & Arundel, S. T. (2022). GeoAI and the Future of Spatial Analytics. In New Thinking in GIScience (pp. 151–158). Springer Nature. https://doi.org/10.1007/978-981-19-3816-0_17

Lopes, A., Alves, E., Alcoforado, M. J., & Machete, R. (2013). Lisbon urban heat island updated: New highlights about the relationships between thermal patterns and wind regimes. Advances in Meteorology, 2013(Figure 1). https://doi.org/10.1155/2013/487695

Ma, Y., Kuang, Y., & Huang, N. (2010). Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+imagery. International Journal of Applied Earth Observation and Geoinformation, 12(2), 110–118. https://doi.org/10.1016/j.jag.2009.12.002

Maru, R. (2015). Urban Heat Island dan Upaya Penanganannya. Prosiding Seminar Nasional Mikrobiologi Kesehatan Dan Lingkungan, 2011, 84–94.

McHaffie, P., Hwang, S., & Follet, C. (2019). GIS An Introduction to Mapping Technologies. CRC Press.

Naf, M. Z. T., & Hernawati, R. (2018). Analisis Fenomena UHI ( Urban Heat Island ) Berdasarkan Hubungan Antara Kerapatan Vegetasi Dengan Suhu Permukaan. ITB Indonesian Journal of Geospatial Vol. 05, No. 1, 2018, 25 - 36, 05(1), 25–36. http://journals.itb.ac.id/index.php/ijog/article/view/9994/3821

Pertuack, S., & Latue, P. C. (2023). Geographic Artificial Intelligence and Unmanned Aerial Vehicles Application for Correlation Analysis of Settlement Density and Land Surface Temperature in Panggang Island Jakarta. Buana Jurnal Geografi, Ekologi Dan Kebencanaan, 1(1), 39–47. https://doi.org/10.56211/buana.v1i1.340

Phelan, P. E., Kaloush, K., Miner, M., Golden, J., Phelan, B., Silva, H., & Taylor, R. A. (2015). Urban Heat Island: Mechanisms, Implications, and Possible Remedies.

Purwonegoro, B., & Setiawan, Y. (2021). Webgis Application for Monitoring Land Use Changein.

Ravanelli, R., Nascetti, A., Cirigliano, R. V, Di Rico, C., Monti, P., & Crespi, M. (2018). Monitoring Urban Heat Island Through Google Earth ENgine Potentialities and Difficulties in Differnt Cities of The United States. Photogrammetry, Remote Sensing, and Spatial Information Sciences, XLII(3), 1467–1472.

Ririh, K. R., Lalili, N., Wicaksono, A., & Tsurayya, S. (2020). Studi Komparasi dan Analisis SWOT Pada Implementasi Kecerdasan Buatan (Artificial Intelligence) di Indonesia. Jurnal Teknik Industri, 15(2), 122–133.

Sastry, M., Varma, H. K., & Halve, V. (2017). Final Report on Urban Planning Characteristics to Mitigate Climate Change in Context of Urban Heat Island Effect.

Shen, Y., Xu, Y., Kong, W., Fei, F., Chen, X., Huang, C., & Yao, J. (2023). Using GeoAI to Reveal the Contribution of Urban Park Green Space Features to Mitigate the Heat Island Effect. Proceedings of the 41st International Conference on Education and Research in Computer Aided Architectural Design in Europe (ECAADe) [Volume 2], 2, 49–58. https://doi.org/10.52842/conf.ecaade.2023.2.049

Skilton, M., & Hovsepian, F. (2018). The Technology of the 4th Industrial Revolution. In The 4th Industrial Revolution. https://doi.org/10.1007/978-3-319-62479-2_2

Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164(May), 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001

Torres de Almeida, C., Gerente, J., Rodrigo dos Prazeres Campos, J., Caruso Gomes Junior, F., Providelo, L. A., Marchiori, G., & Chen, X. (2022). Canopy Height Mapping by Sentinel 1 and 2 Satellite Images, Airborne LiDAR Data, and Machine Learning. Remote Sensing, 14(16), 4112. https://doi.org/10.3390/rs14164112

Ullah, N., Siddique, M. A., Ding, M., Grigoryan, S., Khan, I. A., Kang, Z., Tsou, S., Zhang, T., Hu, Y., & Zhang, Y. (2023). The Impact of Urbanization on Urban Heat Island: Predictive Approach Using Google Earth Engine and CA-Markov Modelling (2005–2050) of Tianjin City, China. International Journal of Environmental Research and Public Health, 20(3). https://doi.org/10.3390/ijerph20032642

Usability.gov. (2014). System Usability Scale (SUS).

Usery, E. L., Arundel, S. T., Shavers, E., Stanislawski, L., Thiem, P., & Varanka, D. (2022). GeoAI in the US Geological Survey for topographic mapping. In Transactions in GIS (Vol. 26, Issue 1, pp. 25–40). John Wiley and Sons Inc. https://doi.org/10.1111/tgis.12830

Utami, D. N. A., Hernawati, R., & Darmawan, S. (2020). Correlation analysis of land surface temperature based on Landsat 8 TIRS image with SRTM terrain data in Bandung City 2015 and 2019. ACRS 2020 - 41st Asian Conference on Remote Sensing.

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., & Wilkes, J. (2015). Largescale cluster management at Google with Borg. Proceedings of the 10th European Conference on Computer Systems, EuroSys 2015. https://doi.org/10.1145/2741948.2741964

Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8

Wan, Z., & Dozier, J. (1995). Viewing-angle dependent split-window method for retrieving land-surface temperatures from space. International Geoscience and Remote Sensing Symposium (IGARSS), 2. https://doi.org/10.1109/igarss.1995.521176

Ward, T. (2010). UX 101: The Wireframe. Viget.




DOI: https://doi.org/10.26760/elkomika.v12i2.303

Refbacks

  • There are currently no refbacks.


 

_______________________________________________________________________________________________________________________

ISSN (print) : 2338-8323 | ISSN (electronic) : 2459-9638

Publisher:

Department of Electrical Engineering Institut Teknologi Nasional Bandung, Indonesia

Address: 20th Building  Institut Teknologi Nasional Bandung PHH. Mustofa Street No. 23 Bandung 40124, Indonesia

Contact: +627272215 (ext. 206)

Email: jte.itenas@itenas.ac.id________________________________________________________________________________________________________________________


Free counters!

Web

Analytics Made Easy - StatCounter

Statistic Journal

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License