Analisis Proksimat dan Bilangan Yodium Sebagai Kajian Awal Aarang Tempurung Nipah Sebagai Bahan Intermediate Karbon Keras

Theresia Evila Purwanti Sri Rahayu, Mohammad Nurhilal, Rosita Dwityaningsih

Sari


ABSTRAK
Karbon keras sebagai anoda baterai ion sodium memiliki kapasitas penyimpanan ion sodium yang paling tinggi diantara karbon lunak dan grafit karena struktur ikatan karbonnya paling acak sehingga akan menyediakan ruang lebih luas untuk insersi ion sodium. Material karbon keras dapat diperoleh dari biomassa yang murah dan melimpah ketersediaannya. Penelitian ini bertujuan sebagai studi pendahuluan untuk mengetahui potensi nipah sebagai bahan bahan intermediate karbon keras melalui analisis proksimat dan penentuan bilangan yodium. Tempurung nipah diarangkan pada suhu 300 oC selama 1 jam tanpa aktivasi kimia. Arang yang diperoleh dikarakterisasi kadar air, volatile matter, abu, dan fixed carbon sesuai metode ASTM D1762-84 dengan sedikit modifikasi serta penentuan bilangan yodium sesuai metode dalam SNI 06-3730-1995. Kandungan air dan zat anorganik yang cukup rendah ditunjukkan dengan kadar air dan kadar abu masing-masing 5,00% dan 9,97 %, kadar volatile matter dan fixed carbon sebesar 42,93% dan 42,11%, sedangkan bilangan yodium yang dimiliki sebesar 346,86 mg/g.

 

ABSTRACT
Hard carbon as an anode of a sodium ion battery has the highest sodium ion storage capacity compared to soft carbon and graphite because it has the most random carbon bond structure providing large enough space for sodium ion insertion. Hard carbon materials can be obtained from biomass which is cheap and abundant in availability. This study aims as a preliminary study to determine the potential of nypa shell charcoal as an intermediate material for hard carbon through proximate analysis and determination of iodine numbers. Nypa shells carbonized at a temperature of 300 oC for 1 hour without chemical activation. The charcoal obtained is characterized by moisture, volatile matter, ash, and fixed carbon content according to the ASTM D1762-84 method with a slight modification while iodine number is determined according to the method in SNI 06-3730-1995. Low water content and inorganic substance content indicated by moisture and ash content of 5.00% and 9.97% respectively, volatile matter and fixed carbon are 42.93% and 42.11% while iodine number is 346.86 mg/g.


Kata Kunci


arang; nipah; analisis proksimat; bilangan yodium

Teks Lengkap:

PDF

Referensi


N. Kularatna, “Rechargeable batteries and their management: Part 30 in a series of tutorials on instrumentation and measurement,†IEEE Instrum. Meas. Mag., vol. 14, no. 2, pp. 20–33, 2011, doi: 10.1109/MIM.2011.5735252.

C. Bai, P. Dallasega, G. Orzes, and J. Sarkis, “Industry 4.0 technologies assessment: A sustainability perspective,†Int. J. Prod. Econ., 2020, doi: 10.1016/j.ijpe.2020.107776.

P. K. R. Maddikunta et al., “Industry 5.0: A survey on enabling technologies and potential applications,†J. Ind. Inf. Integr., vol. 26, no. 100257, 2022, doi: 10.1016/j.jii.2021.100257.

M. Thompson, Q. Xia, Z. Hu, and X. S. Zhao, “A review on biomass-derived hard carbon materials for sodium-ion batteries,†Mater. Adv., vol. 2, no. 18, pp. 5881–5905, 2021, doi: 10.1039/d1ma00315a.

G. E. Blomgren, “The Development and Future of Lithium Ion Batteries,†J. Electrochem. Soc., vol. 164, no. 1, pp. 5019–5025, 2017, doi: 10.1149/2.0251701jes.

H. Cheng, J. G. Shapter, Y. Li, and G. Gao, “Recent progress of advanced anode materials of lithium-ion batteries,†J. Energy Chem., vol. 57, pp. 451–468, 2021, doi: 10.1016/j.jechem.2020.08.056.

Poulomi Roy and Suneel Kumar Srivastava, “Nanostructured Anode Materials for Lithium Ion Batteries,†J. Mater. Chem. A, pp. 1–27, 2014, doi: 10.1039/C4TA04980B.

T. E. P. Sri Rahayu, R. Dwityaningsih, and U. Ulikaryani, “Pengaruh Waktu Karbonisasi Terhadap Kadar Air dan Abu Serta Kemampuan Adsorpsi Arang Tempurung Nipah Teraktivasi Asam Klorida,†Infotekmesin, vol. 13, no. 1, pp. 124–130, 2022, doi: 10.35970/infotekmesin.v13i1.1027.

P. Tamunaidu and S. Saka, “Chemical characterization of various parts of nipa palm (Nypa fruticans),†Ind. Crops Prod., 2011, doi: 10.1016/j.indcrop.2011.04.020.

C. D. Liyanage and M. Pieris, “A Physico-Chemical Analysis of Coconut Shell Powder,†Procedia Chem., vol. 16, pp. 222–228, 2015, doi: 10.1016/j.proche.2015.12.045.

F. A. Gonçalves, H. A. Ruiz, E. S. dos Santos, J. A. Teixeira, and G. R. de Macedo, “Valorization, Comparison and Characterization of Coconuts Waste and Cactus in a Biorefinery Context Using NaClO2–C2H4O2 and Sequential NaClO2–C2H4O2/Autohydrolysis Pretreatment,†Waste and Biomass Valorization, vol. 10, no. 8, pp. 2249–2262, 2019, doi: 10.1007/s12649-018-0229-6.

F. M. Y. Diego Aleixo da Silva, Ana Larissa Santiago Hansted, Gabriela Tami Nakashima, Elias Ricardo Durango Padilla, Júlio César Pereira, “Volatile matter values change according to the standard utilized?,†Res. Soc. Dev., vol. 10, no. 12, 2021, doi: http://dx.doi.org/10.33448/rsd-v10i12.20476.

P. Basu, Biomass characteristics. 2018.

Y. Z. Li Zhou, Ming Li, Yan Sun, “Effect of moisture in microporous activated carbon on the adsorption of methane,†Carbon N. Y., vol. 39, pp. 771–785, 2001, doi: 10.1016/S0008-6223(01)00025-2.

A. P. Dr. Kosha Shah, “Physico-chemical characteristics of Activated Carbon prepared from coconut shell,†Int. J. Latest Eng. Res. Appl., vol. 3, no. 1, pp. 27–31, 2018, [Online]. Available: http://www.ijlera.com/papers/v3-i1/4.201801005.pdf.

and V. O. O. A. Ekpete, A. C. Marcus, “Preparation and Characterization of Activated Carbon Obtained from Plantain (Musa paradisiaca) Fruit Stem,†J. Chem., 2017, doi: https://doi.org/10.1155/2017/8635615.

V. Dhyani and T. Bhaskar, “A comprehensive review on the pyrolysis of lignocellulosic biomass,†Renew. Energy, vol. 129, pp. 695–716, 2018, doi: 10.1016/j.renene.2017.04.035.

P. González-García, “Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications,†Renew. Sustain. Energy Rev., vol. 82, no. xxxx, pp. 1393–1414, 2018, doi: 10.1016/j.rser.2017.04.117.

K. Frikha et al., “Exhausted grape marc derived biochars: Effect of pyrolysis temperature on the yield and quality of biochar for soil amendment,†Sustain., vol. 13, no. 20, 2021, doi: 10.3390/su132011187.

R. Cars, ASTM-D3172. pp. 5–7.

ASTM, Standard Test Method for Determination of Iodine Number of Activated Carbon, vol. 94, no. Reapproved. 2006, pp. 1–5.

C. A. N. e M. C. Guerreiro, “Estimation Of Surface Area And Pore Volume Of Activated Carbons By Methylene Blue And Iodine Numbers,†Quim. Nova, vol. 34, no. 3, pp. 472–476, 2011, doi: 10.1590/S0100-40422011000300020.

F. Raposo, M. A. De La Rubia, and R. Borja, “Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: Influence of adsorbate/adsorbent mass ratio and particle size,†J. Hazard. Mater., vol. 165, no. 1–3, pp. 291–299, 2009, doi: 10.1016/j.jhazmat.2008.09.106.

S. Mopoung, P. Moonsri, W. Palas, and S. Khumpai, “Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution,†Sci. World J., vol. 2015, 2015, doi: 10.1155/2015/415961.

C. Saka, “BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2,†J. Anal. Appl. Pyrolysis, vol. 95, pp. 21–24, 2012, doi: 10.1016/j.jaap.2011.12.020.




DOI: https://doi.org/10.26760/jrh.v6i3.248-260

Refbacks

  • Saat ini tidak ada refbacks.



Alamat redaksi dan tata usaha:

Lembaga Penelitian dan Pengabdian Masyarakat Institut Teknologi Nasional
Fakultas, gedung 14 Lantai 3
Jl. PHH. Mustapa 23 Bandung 40124
Tlp. 022-7272215 Pes. 159, Fax. 022-7202892,
e-mail: hrekayasa@itenas.ac.id


Terindeks:

   


 STATISTIK PENGUNJUNG
Flag Counter
 

Lihat Statistik

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License