Prediksi Perubahan Kawasan Hutan Mangrove Menggunakan Model Cellular Automata Markov pada Citra Penginderaan Jauh Landsat (Studi Kasus: Kawasan Resort Bama, Taman Nasional Baluran, Kabupaten Situbondo, Jawa Timur)

Soni Darmawan, Aprilia Claudia, Anggun Tridawati

Sari


ABSTRACT
Taman Nasional Baluran merupakan taman konservasi yang mengalami degradasi mangrove. Upaya restorasi mangrove perlu dilakukan untuk mendukung Peraturan Daerah pada Kabupaten Situbondo No 6 tahun 2014. Penelitian ini bertujuan untuk menghitung luasan perubahan kawasan hutan mangrove setiap tahun dan pada tahun prediksi. Penelitian ini menggunakan model terintegrasi Markov Chain danCellular Automata untuk menyimulasikan perubahan penggunaan lahan periode 2000 dan 2020 dan memprediksi penggunaan lahan mangrove periode 2030. Teknologi penginderaan jauh digunakan untuk menganalis penggunaan lahan melalui citra satelit Landsat (tahun 2000, 2010, dan 2020). Hasil penelitian menunjukkan bahwa penutupan lahan mangrove mengalami penurunan sebesar 0,5% pada tahun 2000 – 2010 dan mengalami peningkatan sebesar 3,5% pada tahun 2010-2020. Luasan mangrove terus mengalami peningkatan pada tahun 2020 – 2030 yaitu sebesar 9,3% atau 122 Ha. Penerapan model CA-Markov dalam memprediksi penutupan lahan menunjukan nilai kstandard 0,8 yang dapat diartikan bahwa pemodelan dapat diterima secara ilmiah.

 

ABSTRAK
Taman Nasional Baluran is a conservation park that is experiencing mangrove degradation. Mangrove restoration efforts need to be carried out to support the Regional Regulation of Situbondo Regency No. 6 of 2014. This study aims to calculate the extent of changes in mangrove forest areas every year and in the predicted year. This study used an integrated Markov Chain and Cellular Automata model to simulate land use change for the period 2000 and 2020 and predict mangrove land use for the period 2030. Remote sensing technology was used to analyze land use through Landsat satellite imagery (2000, 2010, and 2020). The results showed that mangrove land cover decreased by 0.5% in 2000 – 2010 and increased by 3.5% in 2010 – 2020. Mangrove area continues to increase in 2020 – 2030, which is 9.3% or 122 Ha. The application of the CA-Markov model to predict land cover shows a standard value of 0.8 which means that the modeling is scientifically accepted.


Kata Kunci


Mangrove, Markov Chain, Cellular Automata, Kstandard

Teks Lengkap:

PDF

Referensi


McCarthy, J.J., et al., Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Vol. 2. 2001: Cambridge University Press.

Diaz, H.F., R.S. Bradley, and J. Eischeid, Precipitation fluctuations over global land areas since the late 1800's. Journal of Geophysical Research: Atmospheres, 1989. 94(D1): p. 1195-1210.

Hansen, J. and S. Lebedeff, Global surface air temperatures: Update through 1987. Geophysical Research Letters, 1988. 15(4): p. 323-326.

Jones, P., et al., Northern Hemisphere surface air temperature variations: 1851–1984. Journal of Applied Meteorology and Climatology, 1986. 25(2): p. 161-179.

Jones, P.D., T.M. Wigley, and P.B. Wright, Global temperature variations between 1861 and 1984. Nature, 1986. 322(6078): p. 430-434.

Kumar, P., et al., Climatic variability at Gangtok and Tadong weather observatories in Sikkim, India, during 1961–2017. Scientific reports, 2020. 10(1): p. 1-12.

Brooks, N., Vulnerability, risk and adaptation: A conceptual framework. Tyndall Centre for climate change research working paper, 2003. 38(38): p. 1-16.

Stocker, T., Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. 2014: Cambridge university press.

Organization, W.M., WMO Statement on the Status of the Global Climate in. 1993: World Meteorological Organization.

Burton, M., R. Evans, and A. Sanders, Protecting children in criminal proceedings: Parity for child witnesses and child defendants. Child & Fam. LQ, 2006. 18: p. 397.

Atwoli, L., et al., Call for emergency action to limit global temperature increases, restore biodiversity, and protect health: Wealthy nations must do much more, much faster. Nutrition Reviews, 2021. 79(11): p. 1183-1185.

Field, C.B., et al., Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. 2012: Cambridge University Press.

Costello, A., et al., Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The lancet, 2009. 373(9676): p. 1693-1733.

Office, U.S.G.A., Climate Change, Information on Potential Economic Effects Could Help Guide Federal Efforts to Reduce Fiscal Exposure: Report to Congressional Requesters. 2017: United States Government Accountability Office.

Warren, F.J. and D.S. Lemmen, Canada in a changing climate: Sector perspectives on impacts and adaptation. 2014: Natural Resources Canada Ottawa.

Watts, N., et al., Health and climate change: policy responses to protect public health. The lancet, 2015. 386(10006): p. 1861-1914.

Assembly, G., Sustainable development goals. SDGs Transform Our World, 2015. 2030.

Alongi, D.M., Present state and future of the world's mangrove forests. Environmental conservation, 2002. 29(3): p. 331-349.

Alongi, D.M., Global significance of mangrove blue carbon in climate change mitigation. Sci, 2020. 2(3): p. 67.

Alongi, D., et al., Sediment accumulation and organic material flux in a managed mangrove ecosystem: estimates of land–ocean–atmosphere exchange in peninsular Malaysia. Marine geology, 2004. 208(2-4): p. 383-402.

Bouillon, S., et al., Mangrove production and carbon sinks: a revision of global budget estimates. Global biogeochemical cycles, 2008. 22(2).

Chmura, G.L., et al., Global carbon sequestration in tidal, saline wetland soils. Global biogeochemical cycles, 2003. 17(4).

Crase, B., et al., Hydroperiod is the main driver of the spatial pattern of dominance in mangrove communities. Global Ecology and Biogeography, 2013. 22(7): p. 806-817.

Alongi, D.M., Carbon cycling and storage in mangrove forests. Annual review of marine science, 2014. 6: p. 195-219.

Mcleod, E., et al., A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 2011. 9(10): p. 552-560.

Donato, D.C., et al., Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. Journal of environmental management, 2012. 97: p. 89-96.

Richards, D.R. and D.A. Friess, Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proceedings of the National Academy of Sciences, 2016. 113(2): p. 344-349.

Sanderman, J., et al., A global map of mangrove forest soil carbon at 30 m spatial resolution. Environmental Research Letters, 2018. 13(5): p. 055002.

Davidson, N.C. and C.M. Finlayson, Updating global coastal wetland areas presented in Davidson and Finlayson (2018). Marine and Freshwater Research, 2019. 70(8): p. 1195-1200.

Valiela, I., J.L. Bowen, and J.K. York, Mangrove Forests: One of the World's Threatened Major Tropical Environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience, 2001. 51(10): p. 807-815.

Lovelock, C.E., et al., The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 2015. 526(7574): p. 559-563.

Duke, N.C., et al., Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Marine and Freshwater Research, 2017. 68(10): p. 1816-1829.

Feller, I.C., et al., The state of the world’s mangroves in the 21st century under climate change. Hydrobiologia, 2017. 803(1): p. 1-12.

Saintilan, N., et al., Thresholds of mangrove survival under rapid sea level rise. Science, 2020. 368(6495): p. 1118-1121.

Pendleton, L., et al., Estimating global “blue carbon†emissions from conversion and degradation of vegetated coastal ecosystems. 2012.

Giri, C., Recent advancement in mangrove forests mapping and monitoring of the world using earth observation satellite data. 2021, Multidisciplinary Digital Publishing Institute. p. 563.

Giesen, W., Indonesia's Mangroves: An Update on Remaining Area & Main Management Issues. 1993: Asian Wetland Bureau (AWB).

Murdiyarso, D., et al., The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change, 2015. 5(12): p. 1089-1092.

Change, I.C., Synthesis report summary chapter for policymakers. IPCC: Geneva, Switzerland, 2014. 31.

Haya, N., N. Zamani, and D. D Soedharma, Analisis struktur ekosistem mangrove di Desa Kukupang Kecamatan Kepulauan Joronga. Jurnal Teknologi Perikanan dan Kelautan IPB, 2015. 6(1): p. 79-89.

Eris, I.A. Analisis Perubahan Kawasan Hutan Mangrove Menggunakan Citra Landsat di Kawasan Taman Nasional Baluran, Kabupaten Situbondo, Jawa Timur Tahun 2002 dan 2017. 2019. Prosiding Seminar Nasional Geografi UMS X 2019.

Direktorat Jenderal Konservasi Sumber Daya Alam dan Ekosistem. 2021: p. http://ksdae.menlhk.go.id/info/10224/tanam-mangrove-bersama-di-pantai-bilik-tn-baluran.html.

Verburg, P.H., et al., Land use change modelling: current practice and research priorities. GeoJournal, 2004. 61(4): p. 309-324.

Kumar, K.S., P.U. Bhaskar, and K. Padmakumari, Application of land change modeler for prediction of future land use land cover: a case study of Vijayawada City. International Journal of Advanced Technology in Engineering and Science, 2015. 3(01): p. 773-783.

D BEHERA, M., et al., Modelling and analyzing the watershed dynamics using Cellular Automata (CA)–Markov model–A geo-information based approach. Journal of earth system science, 2012. 121(4): p. 1011-1024.

Zhang, Y., et al., Analyzing the mechanism of land use change in Beijing City from 1990 to 2000. Resour. Sci, 2007. 29: p. 206-213.

Memarian, H., et al., Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. 2012.

Benenson, I. and P. Torrens, Geosimulation: Automata-based modeling of urban phenomena. 2004: John Wiley & Sons.

Candau, J., S. Rasmussen, and K.C. Clarke. A coupled cellular automaton model for land use/land cover dynamics. in 4th International conference on integrating gis and environmental modeling (GIS/EM4): problems, prospects and research needs. Banff, Alberta, Canada. 2000.

Koomen, E., P. Rietveld, and T. de Nijs, Modelling land-use change for spatial planning support. 2008, Springer. p. 1-10.

Liu, Y., Modelling urban development with geographical information systems and cellular automata. 2008: CRC Press.

Torrens, P.M. and I. Benenson, Geographic automata systems. International Journal of Geographical Information Science, 2005. 19(4): p. 385-412.

Weng, Q., Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of environmental management, 2002. 64(3): p. 273-284.

Huang, W., et al., Detection and prediction of land use change in Beijing based on remote sensing and GIS. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 2008. 37: p. 75-82.

Susilo, B., Pemodelan Spasial Probabilistik Integrasi Markov Chain Dan Cellular Automata Untuk Kajian Perubahan Penggunaan Lahan Skala Regional Di Provinsi Daerah Istimewa Yogyakarta. Jurnal Geografi Gea, 2011. 11(2).

Ruben, G.B., et al., Analysis and projection of land-use/land-cover dynamics through scenario-based simulations using the CA-Markov model: A case study in guanting reservoir basin, China. Sustainability, 2020. 12(9): p. 3747.

Cetin, M. and H. Demirel, Modelling and simulation of urban dynamics. Fresenius Environmental Bulletin, 2010. 9: p. 2348-2353.

Li, C., et al., Driving forces analysis of urban expansion based on boosted regression trees and Logistic regression. Acta Ecol. Sin, 2014. 34: p. 727-737.

Arsanjani, J.J., et al., Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 2013. 21: p. 265-275.

Al-sharif, A.A. and B. Pradhan, Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian journal of geosciences, 2014. 7(10): p. 4291-4301.

Yang, J., et al., A local land use competition cellular automata model and its application. ISPRS International Journal of Geo-Information, 2016. 5(7): p. 106.

D'ambrosio, D., et al., A cellular automata model for soil erosion by water. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2001. 26(1): p. 33-39.

Adhikari, S. and J. Southworth, Simulating forest cover changes of Bannerghatta National Park based on a CA-Markov model: a remote sensing approach. Remote Sensing, 2012. 4(10): p. 3215-3243.

Louca, M., I.N. Vogiatzakis, and A. Moustakas, Modelling the combined effects of land use and climatic changes: Coupling bioclimatic modelling with Markov-chain Cellular Automata in a case study in Cyprus. Ecological Informatics, 2015. 30: p. 241-249.

Peruge, T.V.D., S. Arief, and M.S. Sakka, Model Perubahan Penggunaan Lahan Menggunakan Cellular Automata-Markov Chain di Kawasan Mamminasata. 7. 2013, Makassar. Program Studi Geofisika Jurusan Fisika Fakultas Matematika dan ….

Houet, T. and L. Hubert-Moy, Modeling and projecting land-use and land-cover changes with Cellular Automaton in considering landscape trajectories. EARSeL eProceedings, 2006. 5(1): p. 63-76.

Nugroho, H.T.B., Pengembangan Taman Nasional Baluran sebagai Destinasi wisata Unggulan Berbasis Alam di Situbondo Jawa Timur. 2019.

Purwadhi, F.S.H. and T.B. Sanjoto, Pengantar Interpretasi Citra Penginderaan Jauh. BAB III: Dasar Interpretasi Citra Penginderaan Jauh. 2008.

Mountrakis, G., J. Im, and C. Ogole, Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2011. 66(3): p. 247-259.

Zhu, G. and D.G. Blumberg, Classification using ASTER data and SVM algorithms;: The case study of Beer Sheva, Israel. Remote sensing of Environment, 2002. 80(2): p. 233-240.

BOLSTAD, P. and T. Lillesand, Rapid maximum likelihood classification. Photogrammetric engineering and remote sensing, 1991. 57(1): p. 67-74.

Arisondang, V., B. Sudarsono, and Y. Prasetyo, Klasifikasi tutupan lahan menggunakan metode segmentasi berbasis algoritma multiresolusi (Studi kasus Kabupaten Purwakarta, Jawa Barat). 2015, Diponegoro University.

Pontius, R., Quantification error versus location error in comparison of categorical maps (vol 66, pg 1011, 2000). Photogrammetric Engineering and Remote Sensing, 2001. 67(5): p. 540-540.

Congalton, R.G., A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 1991. 37(1): p. 35-46.




DOI: https://doi.org/10.26760/jrh.v6i1.57-72

Refbacks

  • Saat ini tidak ada refbacks.



Alamat redaksi dan tata usaha:

Lembaga Penelitian dan Pengabdian Masyarakat Institut Teknologi Nasional
Fakultas, gedung 14 Lantai 3
Jl. PHH. Mustapa 23 Bandung 40124
Tlp. 022-7272215 Pes. 159, Fax. 022-7202892,
e-mail: hrekayasa@itenas.ac.id


Terindeks:

  


STATISTIK PENGUNJUNG
Flag Counter
 

Lihat Statistik

Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License