Reka Integra ISSN: 2338-5081 Jurnal Online Institut Teknologi Nasional

RANCANGAN SISTEM PENJADWALAN BUKU FIKSI DENGAN PENDEKATAN THEORY OF CONSTRAINTS DI PT. MIZAN GRAFIKA SARANA*

DINA NUR SHABRINA KUSHANA, EMSOSFI ZAINI, ALEX SALEH

Jurusan Teknik Industri Institut Teknologi Nasional (Itenas) Bandung

Email: dna_shabrina@live.com

ABSTRAK

Makalah ini membahas penjadwalan buku fiksi dengan menggunakan pendekatan Theory of Constraints. Pendekatan ini mencari stasiun kerja yang menjadi konstrain dalam produksi kemudian memaksimalkan utilitas dari stasiun kerja tersebut. Penjadwalan dilakukan pada stasiun kerja konstrain tersebut kemudian melakukan penjadwalan pada stasiun non-konstrain. Penjadwalan pada stasiun kerja non-konstrain sebelum stasiun kerja konstrain dilakukan secara backward, sedangkan stasiun kerja non-konstrain setelah stasiun kerja konstrain dilakukan secara forward. Hasil yang diinginkan dari penjadwalan ini yaitu makespan yang minimum.

Kata kunci:Flow shop, maksimasi utilitas stasiun konstrain, makespan minimum

ABSTRACT

This paper discusses the scheduling fiction book by using the Theory of Constraints approach. This approach looking for work stations be constrained in production then maximize the utility of the work station. Scheduling is done on the workstation and then perform the scheduling constraints on the non-constrained station. Scheduling on a non-constraint work station before the constraints work station done backward, whereas the non-constraint work station after constraints work station carried forward. The desired result of this scheduling is the minimum makespan.

Keywords: Flow shop, maximum utility of constraints, workstation minimum makespan

^{*} Makalah ini merupakan ringkasan dari Tugas Akhir yang disusun oleh penulis pertama dengan pembimbingan penulis kedua dan ketiga. Makalah ini merupakan draft awal dan akan disempurnakan oleh para penulis untuk disajikan pada seminar nasional dan/atau jurnal nasional

1.PENDAHULUAN

1.1 Pengantar

Penelitian ini dilakukan di PT.Mizan Grafika Sarana, sebuah perusahaan percetakan yang memproduksi buku novel dari kalangan anak-anak hingga dewasa. Pada lantai produksi terdapat banyak sekali barang setengah jadi yang menunggu untuk diproses berikutnya. Banyaknya tumpukan barang setengah jadi tersebut dapat menghambat kegiatan produksi di lantai produksi. Penumpukan barang setengah jadi karena beberapa produk yang terlambat yang disebabkan urutan *order* yang tidak tepat ataupun perbedaan kapasitas antar stasiun kerja sehingga beban kerja setiap stasiun kerja akan berbeda. Stasiun kerja yang memiliki beban kerja terbesar akan menjadi stasiun kerja pembatas. Oleh karena itu, perusahaan membutuhkan perencanaan penjadwalan yang dapat memaksimalkan utilisasi stasiun kerja yang menjadi pembatas sehingga dapat meminimumkan waktu penyelesaian pekerjaan tersebut.

1.2 Perumusan Masalah

Pada lantai produksi terdapat banyak penumpukan barang setengah jadi yang dapat mengganggu kelancaran aktivitas produksi sehingga banyak penumpukan barang. Hal ini bisa saja dikarenakan beberapa produk yang terlambat yang disebabkan oleh urutan jadwal *order* yang tidak tepat serta adanya perbedaan kapasitas dari setiap stasiun kerja. Stasiun kerja yang menjadi konstrain akan mengganggu kelancaran aliran produksi. Sehingga perlu adanya peninjauan dalam penjadwalan di seluruh stasiun kerja yang dilakukan perusahaan dan mencari distasiun kerja mana yang menjadi konstrain dalam melakukan penjadwalan produksi. Perencanaan penjadwalan ini akan ditinjau terhadap seluruh stasiun kerja kemudian akan dicari stasiun kerja yang menjadi konstrain dalam pembuatan penjadwalan berdasarkan beban kerja terbesar. Kemudian dari stasiun pembatas tersebut kita dapat menentukan jadwal yang tepat untuk memproduksi produk yang diinginkan. Masalah ini akan diselesaikan dengan menggunakan metode *Theory of Constraints* yang dikembangkan oleh Halim dan Selamat (2001).

2.STUDI LITERATUR

2.1 SISTEM MANUFAKTUR

Menurut Bertrand *et al.* (1990) dalam Toha (2000), klasifikasi strategi respon perusahaan dalam menghadapi permintaan konsumen, adalah sebagai berikut:

- 1. Make-to-stock (MTS)
 - Pada sistem MTS kebutuhan produksi dapat diramalkan dan produk yang dihasilkan adalah produk standar, maka dapat dilakukan pengendalian dan perencanaan kapasitas produksi.
- 2. Assembly-to-order (ATO)
 - Pada sistem ATO perusahaan sudah menyediakan *part* atau sub-rakitan yang biasanya diperlukan untuk membuat produk yang diinginkan konsumen.
- 3. *Make-to-order* (MTO)
 - Pada sistem MTO kebutuhan produksi tidak dapat diramalkan karena produk yang dihasilkan tidak standar dan mudah berubah-ubah sesuai keinginan konsumen.
- 4. *Engineer-to-order* (ETO)
 - Pada saat ETO ketika *order* datang maka perlu dilakukan aktivitas perancangan produk untuk memenuhi produk dengan spesifikasi yang diinginkan konsumen dan kemudian barulah dilakukan aktivitas produksi.

Sistem manufaktur juga dapat dibagi berdasarkan bentuk proses produksi atau sistem produksinya. (Fogarty, *et al.*, 1991) membagi sistem produksi menjadi:

1. Flow Shop

Sistem produksi yang menyusun mesin-mesin berdasarkan urutan pemrosesan (*routing*) produk, sehingga sering disebut dengan istilah tata letak produk (*product layout*). Aliran dalam pemrosesan produk mulai dari material hingga produk jadi adalah searah, menurut aliran tertentu.

2. Job Shop

Sistem produksi yang memiliki karakteristik mengorganisasikan sejumlah peralatan berdasarkan fungsinya. Proses yang dialami setiap produk dilakukan di setiap stasiun kerja berbeda-beda. Oleh karena itu peralatan yang digunakan memiliki fungsi yang umum. Peralatan disusun berdasarkan proses produksi yang dilakukannya sehingga sistem produksi ini sering dikenal memiliki sistem tata letak berdasarkan proses (*process layout*).

3. Fixed Site

Sistem produksi yang memiliki karakteristik membawa material, peralatan, dan pekerja ke suatu lokasi tempat produk akan diproduksi, karena ukuran produk yang dihasilkan sangat besar. Contoh: pembuatan kereta api, pesawat terbang, kapal laut, jembatan, dan lainlain.

2.2 PENJADWALAN PRODUKSI

Penjadwalan produksi menurut Baker (1974) didefinisikan sebagai proses pengalokasian sumber atau mesin untuk melakukan sekumpulan tugas dalam jangka waktu tertentu.

Adapun tujuan dilakukannya penjadwalan produksi antara lain:

- 1. Meningkatkan penggunaan (utilitas) sumber.
- 2. Mengurangi *Work in Process* (WIP), untuk mengurangi rata-rata jumlah pekerjaan yang menunggu untuk diproses pada suatu sumber.
- 3. Pemenuhan saat kirim dan mengurangi keterlambatan.

Persoalan penjadwalan timbul apabila beberapa pekerjaan akan dikerjakan secara bersamaan, sedangkan sumber yang dimiliki terbatas. *Input* dari suatu penjadwalan mencakup jenis dan banyaknya *part* yang akan diproses, urutan ketergantungan antar operasi, waktu proses untuk masing-masing operasi, serta fasilitas yang dibutuhkan untuk setiap operasi. Sedangkan *output* dari penjadwalan meliputi *dispatch list*, yaitu urutan pemrosesan *part* serta saat mulai dan selesai dari pemrosesan *part* (*starting and completion time*).

2.3 THEORY OF CONSTRAINT (TOC)

Konsep *Optimized Production Technology* (OPT) menekankan pada optimasi pemanfaatan stasiun konstrain, sehingga metode ini dikenal dengan nama *Theory Of Constraint* (TOC). Metode ini bertujuan untuk mengejar keuntungan yang diterima organisasi dengan meningkatkan *throughput*, sementara persediaan dan pengeluaran operasional sedapat mungkin dikurangi. *Throughput* didefinisikan sebagai aliran uang yang masuk ke perusahaan.

Peningkatan *throughput* dengan menggunakan pendekatan TOC dikenal dengan lima langkah proses untuk memperbaiki sistem, yaitu:

- 1. Penentuan sumber pembatas (Identifying Constraint).
- 2. Eksploitasi sumber pembatas (Exploiting Constraint).
- 3. Subordinasi sumber-sumber lainnya (Subordinating the Remaining Constraint).
- 4. Memecahkan sumber pembatas (Elevating Constraint).
- 5. Mengulangi proses secara keseluruhan (Repeating the Process).

2.4 DRUM BUFFER ROPE


Metode penjadwalan yang memusatkan perhatian pada sumber pembatas dan menggunakan prinsip-prinsip dasar TOC adalah sistem penjadwalan *Drum-Buffer-Rope* (DBR).

Buffer atau penyangga terdiri dari 2 macam, yaitu (Umble dan Srikanth, 1996):

- 1. *Time buffer*s, yaitu waktu yang dijadikan penyangga dengan tujuan untuk melindungi laju produksi (*throughput*) sistem dari gangguan yang selalu terjadi dalam sistem produksi.
- 2. *Stock buffer*s, yaitu produk akhir ataupun yang dijadikan produk penyangga, dengan tujuan untuk memperbaiki kemampuan menanggapi sistem produksi terhadap permintaan, sehingga sistem mungkin untuk menyelesaikan produk dibawah waktu penyelesaian normalnya.

3.METODOLOGI PENELITIAN

Penyusunan kerangka pemecahan masalah ini dimaksudkan agar penyelesaian masalah yang dilakukan dapat terstuktur secara sistematiK, Diagram alir kerangka pemecahan masalah dapat dilakukan Gambar 1.

Gambar 1 Diagram Alir Kerangka Pemecahan Masalah

4. PENGUMPULAN DAN PENGOLAHAN DATA

4.1 PENGUMPULAN DATA

4.1.1 Produk yang Dihasilkan

PT. Mizan Grafika Sarana memproduksi berbagai buku fiksi diantaranya yaitu buku novel, buku cerita, dan novel. Data yang dikumpulkan yaitu pada bulan April 2014, dengan jumlah pesanan 24 buah dan masing-masing produk memiliki jumlah pesanan yang berbeda dengan jumlah eksemplar yang berbeda.

4.1.2 Data Jumlah Mesin dan Waktu Setup

Untuk data jumlah mesin dan waktu *setup* yang terdapat di setiap stasiun kerja dapat dilihat pada Tabel 1.

Tabel 1 Data Jumlah Mesin dan Waktu Setup pada setiap Stasiun Kerja

Stasiun Kerja	Nama Stasiun Kerja	Nama Mesin	Jumlah Mesin (unit)	Waktu Setup (jam)
1	Cetak Cover	SM 52	1	0.250
2	Doff	Mesin Doff	1	0.250
3	Spot UV	Mesin Spot UV	1	0.500
4	Emboss	Mesin Emboss	1	0.167
5	Foil	Mesin Foil	1	0.500
6	Potong Bahan	Mesin Potong	2	0.083
7	Cetak Isi	Rolland	5	0.250
8	Lipat	Shoei	2	0.083
9	Binding	Pony	2	0.250
10	Potong Jadi	Mesin Potong	1	0.083
11	Wrapping/ Shrink	Mesin Wrapping	1	0.083

4.1.3 Data Waktu Proses Produksi

Waktu proses per produk yang dibutuhkan setiap stasiun kerja pada bulan April untuk membuat novel dapat dilihat pada Tabel 2.

Tabel 2 Data Waktu Proses Pengerjaan Buku (menit)

No Order	SK-1	SK-2	SK-3	SK-4	SK-5	SK-6	SK-7	SK-8	SK-9	SK-10	SK-11
1	42	0	0	420	0	92	1022	1022	504	252	252
2	20	244	244	0	0	83	927	927	244	122	122
3	22	0	0	215	0	45	495	495	258	129	129
4	23	276	276	230	0	29	322	322	276	138	138
5	15	180	180	0	0	174	1930	1930	180	90	90
6	22	264	264	220	0	100	1115	1115	264	132	132
7	32	378	378	315	0	61	683	683	378	189	189
8	32	0	0	0	427	30	331	331	384	192	192
9	25	0	0	250	0	104	1150	1150	300	150	150
10	18	212	212	0	0	25	282	282	212	106	106
11	17	0	0	169	0	51	563	563	203	101	101
12	22	0	0	220	0	63	697	697	264	132	132
13	32	384	384	0	0	35	384	384	384	192	192
14	21	0	0	0	280	18	203	203	252	126	126
15	22	264	264	220	0	40	440	440	264	132	132
16	21	252	252	0	280	20	224	224	252	126	126
17	22	262	262	0	291	42	465	465	262	131	131
18	20	240	240	200	267	38	427	427	240	120	120
19	18	0	210	175	0	57	630	630	210	105	105
20	28	330	330	0	367	87	972	972	330	165	165
21	28	330	330	275	367	63	697	697	330	165	165
22	21	0	0	0	280	20	217	217	252	126	126
23	21	0	0	0	280	19	210	210	252	126	126
24	21	0	0	0	0	10	112	112	252	126	126

4.1.4 Data Waktu *Setup* Antar Jenis Produk

Setup mesin-mesin perlu dilakukan sebelum memproses pekerjaan, dan *setup* ini tidak bergantung pada urutan proses pekerjaan (*independent setup*). Pada stasiun kerja terdapat mesin identik yang jumlahnya lebih dari satu. Waktu yang dibutuhkan pada saat pergantian tipe produk yang berbeda untuk mengganti jenis *plat* pada stasiun kerja Cetak Isi (SK-7) memiliki waktu yang sama yaitu 15 menit.

4.2 PENGOLAHAN DATA

4.2.1 Perhitungan Perkiraan *Lead Time* di Stasiun Non Konstrain dengan Algoritma Zijm

Pada bagian ini dilakukan proses perhitungan ekspektasi *lead time* untuk setiap *order* pada tiap stasiun kerja.

4.2.1.1 Perhitungan Laju Permintaan

Laju permintaan untuk setiap *order*, sebagai contoh untuk *order* 1 di Stasiun Kerja 1, dengan $d^{(h)}$ adalah *due date* untuk *order* 1, r_j adalah saat siap di mesin 1, dan m adalah jumlah mesin di Stasiun Kerja 1, maka laju permintaannya adalah:

$$D^{(h)} = \frac{1}{MLT} = \frac{1}{(d^{(h)} - r_i)m}$$
 (1)

Keterangan: 1 hari kerja = 16 jam

Karena setiap *order* yang datang diasumsikan unik, maka laju permintaan *order* merupakan kebalikan dari jumlah jam mesin atau jam orang sistem produksi selama *Manufacturing Lead Time* (MLT) *order* tersebut.

o, ac,							_				
		labe	el 3 Ha	sil Peri	nitunga	an Laju	ı Perm	intaan/	'jam		
No Order					Laju	Permintaan	/jam				
No Oraer	SK-1	SK-2	SK-3	SK-4	SK-5	SK-6	SK-7	SK-8	SK-9	SK-10	SK-11
1	0.006	0.000	0.000	0.006	0.000	0.003	0.001	0.003	0.003	0.006	0.006
2	0.006	0.006	0.006	0.000	0.000	0.003	0.001	0.003	0.003	0.006	0.006
3	0.006	0.000	0.000	0.006	0.000	0.003	0.001	0.003	0.003	0.006	0.006
4	0.006	0.006	0.006	0.006	0.000	0.003	0.001	0.003	0.003	0.006	0.006
5	0.005	0.005	0.005	0.000	0.000	0.003	0.001	0.003	0.003	0.005	0.005
6	0.005	0.005	0.005	0.005	0.000	0.003	0.001	0.003	0.003	0.005	0.005
7	0.006	0.006	0.006	0.006	0.000	0.003	0.001	0.003	0.003	0.006	0.006
8	0.005	0.000	0.000	0.000	0.005	0.003	0.001	0.003	0.003	0.005	0.005
9	0.005	0.000	0.000	0.005	0.000	0.003	0.001	0.003	0.003	0.005	0.005
10	0.005	0.005	0.005	0.000	0.000	0.003	0.001	0.003	0.003	0.005	0.005
11	0.005	0.000	0.000	0.005	0.000	0.002	0.001	0.002	0.002	0.005	0.005
12	0.005	0.000	0.000	0.005	0.000	0.002	0.001	0.002	0.002	0.005	0.005
13	0.004	0.004	0.004	0.000	0.000	0.002	0.001	0.002	0.002	0.004	0.004
14	0.006	0.000	0.000	0.000	0.006	0.003	0.001	0.003	0.003	0.006	0.006
15	0.005	0.005	0.005	0.005	0.000	0.003	0.001	0.003	0.003	0.005	0.005
16	0.005	0.005	0.005	0.000	0.005	0.002	0.001	0.002	0.002	0.005	0.005
17	0.005	0.005	0.005	0.000	0.005	0.002	0.001	0.002	0.002	0.005	0.005
18	0.005	0.005	0.005	0.005	0.005	0.002	0.001	0.002	0.002	0.005	0.005
19	0.004	0.000	0.004	0.004	0.000	0.002	0.001	0.002	0.002	0.004	0.004
20	0.004	0.004	0.004	0.000	0.000	0.002	0.001	0.002	0.002	0.004	0.004
21	0.005	0.005	0.005	0.005	0.005	0.003	0.001	0.003	0.003	0.005	0.005
22	0.005	0.000	0.000	0.000	0.005	0.002	0.001	0.002	0.002	0.005	0.005
23	0.005	0.000	0.000	0.000	0.005	0.002	0.001	0.002	0.002	0.005	0.005
24	0.004	0.000	0.000	0.000	0.000	0.002	0.001	0.002	0.002	0.004	0.004

4.2.1.2 Perhitungan Laju Kedatangan

Laju kedatangan untuk setiap *order*, satuan yang digunakan dalam perhitungan laju kedatangan adalah jam, karena penjadwalan pun akan dilakukan dengan menggunakan satuan jam. Sedangkan ukuran *lot* produksi sama dengan satu, karena penjadwalan yang dilakukan mempunyai satuan *order*, bukan satuan unit produksi. Sebagai contoh untuk *order* 1 di Stasiun Kerja 1, dengan D^(h) adalah laju permintaan untuk *order* 1, dan Q^(h) adalah ukuran *lot* produksi *order* 1 maka laju kedatangannya adalah:

$$\lambda^{(01)} = \frac{D^{(01)}}{Q^{(01)}} \delta^{(01)}$$
 (2)

		Tabel	l 4 Has	il Perh	itunga	ın Laju	ı Keda	tangar	ı/jam		
No Order					Laju	Kedatangan	/jam				
No Oraer	SK-1	SK-2	SK-3	SK-4	SK-5	SK-6	SK-7	SK-8	SK-9	SK-10	SK-11
1	0.006	0.000	0.000	0.006	0.000	0.003	0.001	0.003	0.003	0.006	0.006
2	0.006	0.006	0.006	0.000	0.000	0.003	0.001	0.003	0.003	0.006	0.006
3	0.006	0.000	0.000	0.006	0.000	0.003	0.001	0.003	0.003	0.006	0.006
4	0.006	0.006	0.006	0.006	0.000	0.003	0.001	0.003	0.003	0.006	0.006
5	0.005	0.005	0.005	0.000	0.000	0.003	0.001	0.003	0.003	0.005	0.005
6	0.005	0.005	0.005	0.005	0.000	0.003	0.001	0.003	0.003	0.005	0.005
7	0.006	0.006	0.006	0.006	0.000	0.003	0.001	0.003	0.003	0.006	0.006
8	0.005	0.000	0.000	0.000	0.005	0.003	0.001	0.003	0.003	0.005	0.005
9	0.005	0.000	0.000	0.005	0.000	0.003	0.001	0.003	0.003	0.005	0.005
10	0.005	0.005	0.005	0.000	0.000	0.003	0.001	0.003	0.003	0.005	0.005
11	0.005	0.000	0.000	0.005	0.000	0.002	0.001	0.002	0.002	0.005	0.005
12	0.005	0.000	0.000	0.005	0.000	0.002	0.001	0.002	0.002	0.005	0.005
13	0.004	0.004	0.004	0.000	0.000	0.002	0.001	0.002	0.002	0.004	0.004
14	0.006	0.000	0.000	0.000	0.006	0.003	0.001	0.003	0.003	0.006	0.006
15	0.005	0.005	0.005	0.005	0.000	0.003	0.001	0.003	0.003	0.005	0.005
16	0.005	0.005	0.005	0.000	0.005	0.002	0.001	0.002	0.002	0.005	0.005
17	0.005	0.005	0.005	0.000	0.005	0.002	0.001	0.002	0.002	0.005	0.005
18	0.005	0.005	0.005	0.005	0.005	0.002	0.001	0.002	0.002	0.005	0.005
19	0.004	0.000	0.004	0.004	0.000	0.002	0.001	0.002	0.002	0.004	0.004
20	0.004	0.004	0.004	0.000	0.000	0.002	0.001	0.002	0.002	0.004	0.004
21	0.005	0.005	0.005	0.005	0.005	0.003	0.001	0.003	0.003	0.005	0.005
22	0.005	0.000	0.000	0.000	0.005	0.002	0.001	0.002	0.002	0.005	0.005
23	0.005	0.000	0.000	0.000	0.005	0.002	0.001	0.002	0.002	0.005	0.005
24	0.004	0.000	0.000	0.000	0.000	0.002	0.001	0.002	0.002	0.004	0.004

4.2.1.3 Perhitungan Waktu Proses Pengerjaan *Order*

Waktu proses pengerjaan order , sebagai contoh untuk order 1 dengan $au_{jk}^{(h)}$ adalah waktu setup di Stasiun Kerja 1, $Q^{(h)}$ adalah jumlah order 1, dan $a_{jk}^{(h)}$ adalah waktu proses per unit di Stasiun Kerja 1, maka waktu proses pengerjaan *order* di Stasiun Kerja 1 adalah: $P_{11}^{(01)} = \tau_{11}^{(01)} + Q^{(01)}$. $a_{11}^{(01)}$

(3)

		Tabe	el 5 Ha	<u>ısil Per</u>	hitung	<u>an Wa</u>	ktu Pr	oses (j	am)		
No Order					WAK	TU PROSES	(JAM)				
No Oraer	SK-1	SK-2	SK-3	SK-4	SK-5	SK-6	SK-7	SK-8	SK-9	SK-10	SK-11
1	0.950	0.000	0.000	7.167	0.000	1.616	17.283	17.117	8.650	4.283	4.283
2	0.588	4.310	4.560	0.000	0.000	1.474	15.701	15.534	4.310	2.113	2.113
3	0.608	0.000	0.000	3.750	0.000	0.825	8.492	8.325	4.550	2.233	2.233
4	0.633	4.850	5.100	4.000	0.000	0.566	5.617	5.450	4.850	2.383	2.383
5	0.500	3.250	3.500	0.000	0.500	2.978	32.417	32.250	3.250	1.583	1.583
6	0.617	4.650	4.900	3.833	0.000	1.755	18.828	18.661	4.650	2.283	2.283
7	0.775	6.550	6.800	5.417	0.000	1.107	11.625	11.458	6.550	3.233	3.233
8	0.783	0.000	0.000	0.000	7.611	0.579	5.761	5.594	6.650	3.283	3.283
9	0.667	0.000	0.000	4.333	0.000	1.808	19.417	19.250	5.250	2.583	2.583
10	0.544	3.780	4.030	0.000	0.000	0.507	4.957	4.790	3.780	1.848	1.848
11	0.532	0.000	0.000	2.983	0.000	0.928	9.639	9.472	3.630	1.773	1.773
12	0.617	0.000	0.000	3.833	0.000	1.128	11.861	11.694	4.650	2.283	2.283
13	0.783	6.650	6.900	0.000	0.000	0.659	6.650	6.483	6.650	3.283	3.283
14	0.600	0.000	0.000	0.000	5.167	0.388	3.633	3.467	4.450	2.183	2.183
15	0.617	4.650	4.900	3.833	0.000	0.743	7.583	7.417	4.650	2.283	2.283
16	0.600	4.450	4.700	0.000	5.167	0.419	3.983	3.817	4.450	2.183	2.183
17	0.613	4.610	4.860	0.000	5.344	0.781	8.001	7.834	4.610	2.263	2.263
18	0.583	4.250	4.500	3.500	4.944	0.723	7.361	7.194	4.250	2.083	2.083
19	0.542	0.000	4.000	3.083	0.000	1.028	10.750	10.583	3.750	1.833	1.833
20	0.708	5.750	6.000	0.000	0.000	1.541	16.444	16.278	5.750	2.833	2.833
21	0.708	5.750	6.000	4.750	6.611	1.128	11.861	11.694	5.750	2.833	2.833
22	0.600	0.000	0.000	0.000	5.167	0.409	3.867	3.700	4.450	2.183	2.183
23	0.600	0.000	0.000	0.000	5.167	0.398	3.750	3.583	4.450	2.183	2.183
24	0.600	0.000	0.000	0.000	0.000	0.251	2.117	1.950	4.450	2.183	2.183

Keterangan: Waktu proses per unit dibagi dengan 60, karena datanya dalam menit.

4.2.1.4 Perhitungan Rata-Rata Beban Kerja dan Waktu Tunggu

Sebagai contoh rata-rata beban kerja Stasiun Kerja 1, dengan $\lambda_{jk}^{(h)}$ adalah laju kedatangan order 1, operasi pertama, di Stasiun Kerja 1, dan $P_{jk}^{(h)}$ adalah waktu proses pengerjaan untuk order 1, operasi pertama, di Stasiun Kerja 1 adalah:

$$\rho_1 = \sum_{h,k} \lambda_{jk}^{(h)} P_{jk}^{(h)} \tag{4}$$

		Tabel	6 Hasi	il Perh	itungai	n Rata	-Rata I	Beban	Kerja		
N. O. I					В.	EBAN KER.	ΙA				
No Order	SK-1	SK-2	SK-3	SK-4	SK-5	SK-6	SK-7	SK-8	SK-9	SK-10	SK-11
1	0.006	0.000	0.000	0.045	0.000	0.005	0.022	0.053	0.027	0.027	0.027
2	0.004	0.027	0.029	0.000	0.000	0.005	0.020	0.049	0.013	0.013	0.013
3	0.003	0.000	0.000	0.021	0.000	0.002	0.010	0.024	0.013	0.013	0.013
4	0.004	0.028	0.029	0.023	0.000	0.002	0.006	0.015	0.014	0.014	0.014
5	0.003	0.017	0.018	0.000	0.000	0.008	0.034	0.084	0.008	0.008	0.008
6	0.003	0.024	0.026	0.020	0.000	0.005	0.020	0.049	0.012	0.012	0.012
7	0.004	0.037	0.039	0.031	0.000	0.003	0.013	0.033	0.019	0.018	0.018
8	0.004	0.000	0.000	0.000	0.040	0.002	0.006	0.015	0.017	0.017	0.017
9	0.003	0.000	0.000	0.023	0.000	0.005	0.020	0.050	0.014	0.013	0.013
10	0.003	0.020	0.021	0.000	0.000	0.001	0.005	0.012	0.010	0.010	0.010
11	0.003	0.000	0.000	0.014	0.000	0.002	0.009	0.023	0.009	0.009	0.009
12	0.003	0.000	0.000	0.018	0.000	0.003	0.011	0.028	0.011	0.011	0.011
13	0.003	0.030	0.031	0.000	0.000	0.001	0.006	0.014	0.015	0.015	0.015
14	0.003	0.000	0.000	0.000	0.029	0.001	0.004	0.010	0.013	0.012	0.012
15	0.003	0.024	0.026	0.020	0.000	0.002	0.008	0.019	0.012	0.012	0.012
16	0.003	0.021	0.023	0.000	0.025	0.001	0.004	0.009	0.011	0.010	0.010
17	0.003	0.022	0.023	0.000	0.026	0.002	0.008	0.019	0.011	0.011	0.011
18	0.003	0.020	0.022	0.017	0.024	0.002	0.007	0.017	0.010	0.010	0.010
19	0.002	0.000	0.018	0.014	0.000	0.002	0.010	0.024	0.008	0.008	0.008
20	0.003	0.026	0.027	0.000	0.000	0.003	0.015	0.036	0.013	0.013	0.013
21	0.004	0.030	0.031	0.025	0.034	0.003	0.012	0.030	0.015	0.015	0.015
22	0.003	0.000	0.000	0.000	0.025	0.001	0.004	0.009	0.011	0.010	0.010
23	0.003	0.000	0.000	0.000	0.025	0.001	0.004	0.009	0.011	0.010	0.010
24	0.003	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.010	0.010	0.010
Jumlah	0.079	0.326	0.361	0.270	0.227	0.062	0.258	0.636	0.306	0.301	0.301

Sebagai contoh perkiraan waktu tunggu *order* di Stasiun Kerja 1 dengan $\lambda_{ik}^{(h)}$ adalah laju kedatangan $\mathit{order}\ 1$, operasi pertama, di Stasiun Kerja 1, $p_{jk}^{(h)}$ adalah waktu proses pengerjaan untuk *order* 1, operasi pertama, di Stasiun Kerja 1, dan p_i rata-rata beban kerja di Stasiun Kerja 1 adalah:

$$\mathsf{E}_{(\mathsf{wi})} = \frac{\sum_{h,k} \lambda_{jk}^{(h)} \left(P_{jk}^{(h)} \right)^2}{2(1-\rho)} \tag{5}$$

No Order					WAK	TU TUNGG	J (jam)				
No Oraer	SK-1	SK-2	SK-3	SK-4	SK-5	SK-6	SK-7	SK-8	SK-9	SK-10	SK-11
1	0.006	0.000	0.000	0.321	0.000	0.008	0.373	0.916	0.234	0.115	0.115
2	0.002	0.116	0.130	0.000	0.000	0.007	0.308	0.754	0.058	0.028	0.028
3	0.002	0.000	0.000	0.080	0.000	0.002	0.082	0.197	0.059	0.028	0.028
4	0.002	0.134	0.148	0.091	0.000	0.001	0.036	0.084	0.067	0.032	0.032
5	0.001	0.055	0.064	0.000	0.000	0.023	1.095	2.708	0.028	0.013	0.013
6	0.002	0.113	0.125	0.077	0.000	0.008	0.369	0.907	0.056	0.027	0.027
7	0.003	0.244	0.263	0.167	0.000	0.003	0.154	0.373	0.122	0.059	0.059
8	0.003	0.000	0.000	0.000	0.302	0.001	0.035	0.082	0.115	0.056	0.056
9	0.002	0.000	0.000	0.098	0.000	0.009	0.393	0.965	0.072	0.035	0.035
10	0.002	0.074	0.085	0.000	0.000	0.001	0.026	0.060	0.037	0.018	0.018
11	0.001	0.000	0.000	0.043	0.000	0.002	0.089	0.216	0.032	0.015	0.015
12	0.002	0.000	0.000	0.071	0.000	0.003	0.135	0.329	0.052	0.025	0.025
13	0.003	0.197	0.213	0.000	0.000	0.001	0.039	0.094	0.099	0.048	0.048
14	0.002	0.000	0.000	0.000	0.152	0.000	0.015	0.034	0.056	0.027	0.027
15	0.002	0.113	0.125	0.077	0.000	0.001	0.060	0.143	0.056	0.027	0.027
16	0.002	0.095	0.106	0.000	0.128	0.000	0.015	0.035	0.048	0.023	0.023
17	0.002	0.102	0.114	0.000	0.137	0.001	0.062	0.148	0.051	0.025	0.025
18	0.002	0.087	0.097	0.059	0.118	0.001	0.052	0.124	0.043	0.021	0.021
19	0.001	0.000	0.071	0.042	0.000	0.002	0.103	0.250	0.031	0.015	0.015
20	0.002	0.148	0.161	0.000	0.000	0.005	0.241	0.591	0.074	0.036	0.036
21	0.003	0.172	0.188	0.118	0.228	0.003	0.147	0.356	0.086	0.042	0.042
22	0.002	0.000	0.000	0.000	0.128	0.000	0.014	0.033	0.048	0.023	0.023
23	0.002	0.000	0.000	0.000	0.128	0.000	0.014	0.031	0.048	0.023	0.023
24	0.002	0.000	0.000	0.000	0.000	0.000	0.004	0.008	0.044	0.021	0.021
Jumlah	0.028	1.224	1.477	0.851	0.855	0.046	2.603	12.949	1.164	0.560	0.560

Setelah melihat hasil perhitungan dari beban kerja pada Tabel 4.6 dan perhitungan waktu tunggu pada Tabel 4.7 di atas, maka Stasiun Kerja Lipat (SK-8) memiliki beban kerja terbesar, sehingga ditetapkan bahwa Stasiun Kerja Lipat sebagai stasiun konstrain (b=SK-8).

4.2.1.5 Perhitungan Perkiraan Lead Time

Sebagai contoh untuk menghitung perkiraan *lead time order* 1 di Stasiun Kerja 1 dengan $E[W_I]$ adalah waktu tunggu di Stasiun Kerja 1, dan $p_{jk}^{(h)}$ adalah waktu proses pengerjaan untuk *order* 1, operasi pertama, di Stasiun Keria 1 adalah :

order 1, operasi pertama, di Stasiun Kerja 1 adalah :
$$E[T_{jk}^{(h)}] = E[W_1] + P_{11}^{(01)}$$
(6)

Tabel 8 Hasil Perhitungan Ekspektasi *Lead Time* (jam)

					EKS	PEKTASI <i>LI</i>	EAD TIME				
No Order			SEBELUM	STASIUN K	ONSTRAIN			STASIUN KONSTRAIN	SETELAH S	STASIUN K	ONSTRAIN
	SK-1	SK-2	SK-3	SK-4	SK-5	SK-6	SK-7	SK-8	SK-9	SK-10	SK-11
1	0.978	1.224	1.477	8.017	0.855	1.662	19.886	30.066	9.814	4.843	4.843
2	0.617	5.534	6.037	0.851	0.855	1.519	18.303	28.483	5.474	2.673	2.673
3	0.637	1.224	1.477	4.601	0.855	0.871	11.094	21.274	5.714	2.793	2.793
4	0.662	6.074	6.577	4.851	0.855	0.612	8.219	18.399	6.014	2.943	2.943
5	0.528	4.474	4.977	0.851	1.355	3.024	35.019	45.199	4.414	2.143	2.143
6	0.645	5.874	6.377	4.684	0.855	1.801	21.430	31.610	5.814	2.843	2.843
7	0.803	7.774	8.277	6.267	0.855	1.153	14.228	24.407	7.714	3.793	3.793
8	0.812	1.224	1.477	0.851	8.466	0.625	8.364	18.543	7.814	3.843	3.843
9	0.695	1.224	1.477	5.184	0.855	1.854	22.019	32.199	6.414	3.143	3.143
10	0.573	5.004	5.507	0.851	0.855	0.552	7.559	17.739	4.944	2.408	2.408
11	0.560	1.224	1.477	3.834	0.855	0.974	12.242	22.421	4.794	2.333	2.333
12	0.645	1.224	1.477	4.684	0.855	1.174	14.464	24.643	5.814	2.843	2.843
13	0.812	7.874	8.377	0.851	0.855	0.705	9.253	19.432	7.814	3.843	3.843
14	0.628	1.224	1.477	0.851	6.022	0.433	6.236	16.416	5.614	2.743	2.743
15	0.645	5.874	6.377	4.684	0.855	0.789	10.186	20.366	5.814	2.843	2.843
16	0.628	5.674	6.177	0.851	6.022	0.465	6.586	16.766	5.614	2.743	2.743
17	0.642	5.834	6.337	0.851	6.199	0.826	10.604	20.783	5.774	2.823	2.823
18	0.612	5.474	5.977	4.351	5.799	0.769	9.964	20.143	5.414	2.643	2.643
19	0.570	1.224	5.477	3.934	0.855	1.074	13.353	23.532	4.914	2.393	2.393
20	0.737	6.974	7.477	0.851	0.855	1.586	19.047	29.227	6.914	3.393	3.393
21	0.737	6.974	7.477	5.601	7.466	1.174	14.464	24.643	6.914	3.393	3.393
22	0.628	1.224	1.477	0.851	6.022	0.454	6.469	16.649	5.614	2.743	2.743
23	0.628	1.224	1.477	0.851	6.022	0.444	6.353	16.532	5.614	2.743	2.743
24	0.628	1.224	1.477	0.851	0.855	0.297	4.719	14.899	5.614	2.743	2.743

4.2.2 Algoritma Penentuan Etc dan Ltc (Algoritma 1)

Algoritma 1 berfungsi untuk menentukan *Etc* (saat paling awal setiap *order* bisa mulai dikerjakan di stasiun konstrain) dan *Ltc* (saat paling akhir setiap *order* bisa mulai dikerjakan di stasiun konstrain)setiap pesanan, sebagai konstrain yang mewakili saat siap dan *due date* dari setiap *order*. *Etc* dan *Ltc* merupakan salah satu kriteria untuk pemilihan pesanan yang akan didistribusikan, penentuan solusi inisial, dan pemeriksaaan kelayakan setiap pesanan yang

telah dijadwalkan.

Sebagai contoh untuk menghitung Etc dan Ltc order O₁ adalah sebagai berikut:

$$Etc_{01} = \text{Max} \{R_{1,}t_{0}\} + (W_{11}+P_{11}) + (W_{12}+P_{12}) + \dots + (W_{17}+P_{17})$$

= Max $[R_{1},t_{0}] + E[T_{11}^{1}] + [T_{12}^{1}] + \dots + [T_{17}^{1}]$ (7)

$$Ltc_{01} = dd_{1} - (W_{19} + P_{19}) - (W_{110} + P_{110}) - (W_{111} + P_{111}) - P_{18}$$

$$= dd_{1} - E[T_{19}^{1}] - E[T_{110}^{1}] - F[T_{111}^{1}] - P_{18}$$
(8)

Kemudian hasil Etc dan Ltc tersebut diurutkan berdasarkan Etc terkecil.

Tabel 9 Hasil Perhitungan Etc dan Ltc Dirutkan Berdasarkan Etc pada Stasiun Kerja 8 (jam)

	illungan Lic dan Lic Dirukan berdasarka		
No Order	Nama Produk	Etc	Ltc
24	Katalog Rima	186.051	386.950
14	Janji Persahabatan (CU)	192.871	337.433
23	KKPK The Ocean Girls	192.998	369.317
22	KKPK The Winter	193.125	369.200
3	Hari Tanpa Cinta	196.758	332.375
10	PBC: I Need You (CU)	196.901	353.450
11	Anak Juga Manusia (CU)	197.165	365.068
8	KKPK. Notes From Singapore (CU)	197.818	346.906
12	The Sea Of Monster (CU)	200.522	360.806
16	Garudayana Saga 3 (CU)	202.402	369.083
19	Hafiz Cilik (CU)	202.486	379.717
4	Fantasteen. Ghost Dormitory (CU)	203.849	334.650
13	Work Book	204.725	378.017
15	Komik KKPK. Next G Hantu Balon (CU)	205.409	349.083
17	Garudayana Saga 2 (CU)	207.293	364.746
18	Sparasi Garudayana Saga 2 (CU)	208.945	366.106
9	Insurgent (CU)	209.308	336.050
2	Laskar Pelangi - New Edition (CU)	209.716	309.646
1	Jeda Dalam Koma	210.099	299.383
20	The Fault In Our Stars (CU)	213.526	370.022
7	Dear Pridence	215.357	325.242
6	Koma (CU)	217.666	337.839
21	1001 Alasan Kamu Harus Sayang Ibu	219.892	342.606
5	Steve Jobs (New - Edition) (CU)	226.228	327.050

4.2.3 Algoritma Pendistribusian Pesanan ke Mesin-Mesin di Stasiun Konstrain (Algoritma 2)

Algoritma 2 berfungsi untuk melakukan pendistribusian pesanan-pesanan ke mesin-mesin di stasiun konstrain yang khusus diusulkan untuk sistem produksi yang memiliki lebih dari satu mesin di stasiun konstrain.

Sebagai contoh untuk menghitung pendistribusian pesanan ke mesin-mesin di stasiun konstrain adalah sebagai berikut:

Minimum
$$Etc = Etc_h - (r_j + \tau_{kh})$$
 (9)

$$r^* = r_j + P_{hb} + \tau_{kh} \tag{10}$$

Kemudian order dibagi kedalam 2 mesin, yaitu mesin 1 dan mesin 2.

Tabel 10 Hasil Perhitungan Pendistribusian Pesanan pada Stasiun Kerja Konstrain di Mesin 1

No Order	Nama Produk	Etc	Ltc
24	Katalog Rima	186.051	386.950
23	KKPK The Ocean Girls	192.998	369.317
8	KKPK. Notes From Singapore (CU)	197.818	346.906
3	Hari Tanpa Cinta	196.758	332.375
16	Garudayana Saga 3 (CU)	202.402	369.083
4	Fantasteen. Ghost Dormitory (CU)	203.849	334.650
13	Work Book	204.725	378.017
19	Hafiz Cilik (CU)	202.486	379.717
18	Sparasi Garudayana Saga 2 (CU)	208.945	366.106
9	Insurgent (CU)	209.308	336.050
7	Dear Pridence	215.357	325.242
21	1001 Alasan Kamu Harus Sayang Ibu	219.892	342.606
6	Koma (CU)	217.666	337.839

Berikut ini hasil perhitungan pendistribusian pesanan pada Stasiun Kerja konstrain di mesin 2 dapat dilihat pada Tabel 11.

Tabel 11 Hasil Perhitungan Pendistribusian Pesanan pada Stasiun Kerja Konstrain di Mesin 2

No Order	Nama Produk	Etc	Ltc
14	Janji Persahabatan (CU)	192.871	337.433
22	KKPK The Winter	193.125	369.200
10	PBC: I Need You (CU)	196.901	353.450
11	Anak Juga Manusia (CU)	197.165	365.068
12	The Sea Of Monster (CU)	200.522	360.806
15	Komik KKPK. Next G Hantu Balon (CU)	205.409	349.083
17	Garudayana Saga 2 (CU)	207.293	364.746
1	Jeda Dalam Koma	210.099	299.383
2	Laskar Pelangi - New Edition (CU)	209.716	309.646
20	The Fault In Our Stars (CU)	213.526	370.022
5	Steve Jobs (New - Edition) (CU)	226.228	327.050

4.2.4 Algoritma Penjadwalan Pesanan di Setiap Mesin (Algoritma 3)

Proses penjadwalan di stasiun konstrain dan pengujian kelayakan setiap *order* yang telah dijadwalkan akan menggunakan Algoritma 3.

4.2.4.1 Algoritma Penentuan Jadwal Inisial (Algoritma 3a)

Algoritma ini bertujuan mencari jadwal inisial dari setiap mesin di stasiun konstrain dengan memperhatikan *setup* yang minimum dari pesanan yang sebelumnya dikerjakan. Tahapan pertama dari Algoritma 3 adalah menghitung solusi inisial yang bertujuan untuk menentukan total waktu *setup* yang paling minimum. Solusi inisial memiliki kemungkinan *order* yang tidak layak, karena hanya memperhatikan *setup* yang minimum tanpa memperhatikan *Ltc* dan *Etc*. Dengan algoritma ini dapat ditentukan batas total waktu *setup* yang dapat terjadi. Karena *setup* yang dilakukan untuk setiap produk itu sama, maka urutan produk yang dikerjakan sama dengan Algoritma 2.

4.2.4.2 Algoritma Penjadwalan untuk *N Order* pada 1 *Stage N* Mesin *Parallel* (Algoritma 3b)

Algoritma ini bertujuan mencari alternatif urutan pengerjaan *order* yang terbaik dari alternatifalternatif yang ada pada setiap stasiun konstrain yang memiliki solusi inisial tidak layak, artinya ada pesanan yang tidak layak untuk dikerjakan pada mesin itu. Terdapat beberapa perubahan dalam algoritma yang digunakan. Hal ini dilakukan untuk mempersingkat algoritma agar lebih mudah diterapkan

Hasil perhitungan dengan Algoritma 3a ini belum tentu layak, namun dengan Algoritma 3a ini dapat ditentukan batas bawah total waktu *setup* yang dapat terjadi hasil pengurutan *order* yang dapat dihitung dengan menggunakan Algoritma 3b yang sudah mengalami perubahan.

4.2.5 Algoritma Penentuan Saat *Release Order* ke Lantai Produksi (Algoritma 4)

Algoritma terakhir adalah Algoritma 4, yang merupakan algoritma untuk menterjemahkan jadwal yang telah disusun di stasiun konstrain menjadi jadwal saat *release* setiap pesanan ke lantai produksi. Algoritma ini mengalami perubahan langkah. Setelah diperoleh jadwal di stasiun konstrain, maka langkah terakhir adalah menentukan jadwal di stasiun *non*-konstrain dan menentukan saat *release* dari *order* dengan menggunakan Algoritma 4 yang sudah mengalami perubahan.

5. ANALISIS JADWAL PRODUKSI

5.1 ANALISIS SUMBER PEMBATAS (KONSTRAIN)

Diantara 11 stasiun kerja yang ada, Stasiun Kerja 8 memiliki beban kerja yang paling besar yaitu sebesar 0,636 jam dengan waktu tunggu sebesar 12,949 jam. Sehingga Stasiun Kerja 8 ditentukan menjadi stasiun kerja konstrain. Kemungkinan peyebabnya yaitu karena keterlambatan dalam menjadwalkan *order* ke stasiun kerja yang disebabkan urutan penjadwalan yang salah ataupun karena perbedaan kapasitas mesin.

Stasiun kerja konstrain ini dijadikan acuan dalam pembuatan penjadwalan mesin, sehingga diutamakan produktifitas kerjanya dapat maksimal agar memperlancar jadwal produksi. Namun, pada penjadwalan di stasiun konstrain terdapat beberapa *idle time*, dikarenakan waktu *release* yang kurang dari nilai *Etc* sehingga penjadwalan dilakukan sebesar nilai *Etc* di pesanan itu sendiri.

5.2 ANALISIS BUFFER YANG DIGUNAKAN

Tabel 1 Waktu Tunggu (iam)

Tabel I Wakta Tunggu (Jani)	
Stasiun Kerja	Waktu Tunggu (jam)
SK-1	0.028
SK-2	1.224
SK-3	1.477
SK-4	0.851
SK-5	0.855
SK-6	0.046
SK-7	2.603
SK-8	12.949
SK-9	1.164
SK-10	0.560
SK-11	0.560

Buffer yang digunakan yaitu time buffer. Buffer ini digunakan untuk menjaga agar utilitas mesin dapat bekerja maksimal. Besarnya buffer yang diberikan yaitu sebesar 12,949 jam. Selisih waktu antara stasiun kerja konstrain dengan stasiun kerja non konstrain sebelumnya diharapkan dapat menjaga keseimbangan penjadwalan. Sehingga stasiun kerja non konstrain sebelum stasiun kerja konstrain dapat terlambat, namun besar keterlambatannya tidak boleh melebihi dari besarnya buffer yang diberikan.

5.3 ANALISIS HASIL PENJADWALAN

Hasil dari penjadwalan yang telah dilakukan dapat dilihat pada *gantt chart*. Setelah dilakukan penjadwalan dapat terlihat bahwa pada stasiun konstrain terdapat waktu mesin menganggur. Hal ini disebabkan karena waktu *release* lebih kecil daripada waktu *Etc*, sehingga waktu *release* mengikuti waktu *Etc* dari pesanan tersebut. Untuk penjadwalan di stasiun *non* konstrain baik sebelum ataupun setelah stasiun konstrain terdapat produk yang dijadwalkan terlebih dahulu, sehingga kemungkinan akan terjadi barang setengah jadi.

Dari hasil pengolahan dapat dilihat bahwa sebagian besar *order* yang dijadwalkan lebih cepat daripada *order* yang dijadwalkan di perusahaan. Ada 6 *order* yang saat selesai dari hasil

penjadwlan lebih besar dibandingkan dengan saat selesai dari data perusahaan. Namun hal ini tidak begitu bermasalah karena saat selesai dari *order* tersebut masih berada pada batas *due date* yang diberikan oleh konsumen.

6. KESIMPULAN DAN SARAN

6.1 KESIMPULAN

Berikut ini kesimpulan hasil dari penelitian yang telah dilakukan:

- 1. Stasiun kerja yang menjadi stasiun konstrain yaitu Stasiun Kerja 8 atau Stasiun Kerja Lipat. Maka dari itu Stasiun Kerja 8 akan dimaksimalkan utilitasnya serta menjadi acuan dalam penjadwalan.
- 2. *Buffer* yang digunakan pada penelitian ini yaitu *buffer times. Buffer* yang digunakan untuk menyangga agar stasiun konstrain dapat terus memaksimalkan utilitasnya yaitu sebesar 12,949 jam. Stasiun kerja sebelumnya boleh terlambat menjadwalkan *order*nya namun tidak boleh melebihi dari *buffer times* yang telah ditentukan.
- 3. *Makespan* yang dihasilkan dengan menggunakan pendekatan *Theory of Constraints* yaitu sebesar 81,312 jam, sedangkan *makespan* yang dihasilkan perusahaan yaitu sebesar 128 jam. Dengan begitu *makespan* yang dihasilkan dengan pendekatan *Theory of Constraints* lebih kecil dibandingkan dengan perusahaan.
- 4. *Due date* setiap *job* terpenuhi dengan jadwal yang dihasilkan oleh penjadwalan dengan menggunakan pendekatan *Theory of Constraints* dan waktu mulai masih di dalam jadwal *feasible*.

6.2 SARAN

Dari hasil penelitian yang telah dilakukan untuk sistem penjadwalan di PT. Mizan Grafika Sarana, maka perusahaan dapat melakukan penjadwalan dengan menggunakan *Theory of Constraints*. Perusahaan juga disarankan untuk terlebih dahulu menjadwalkan Stasiun Kerja 8 untuk dimaksimalkan utilitasnya kemudian menjadwalkan stasiun kerja lainnya dengan memberikan *buffer times* pada stasiun kerja konstrain sebesar 12,949 jam. Diharapkan dengan memasimalkan utilitas kerja stasiun konstrain dapat meminimisasi *makespan* atau jumlah mesin di stasiun konstrain dapat ditambah.

REFERENSI

Baker, K.R, 1974, Introduction to Sequenching and Scheduling, John wiley & Son, New York.

Fogarty, D.W., Blackstone, J.H., Hoffmann, T.R., 1991, *Production and Inventory Management*, South-Western Publishing Co., Cincinnati, Ohio.

Toha, I.S., 2000, Sistem Manufaktur Berdasarkan Pesanan Non-repetitif, *Kumpulan Makalah Seminar Nasional Sistem Produksi*, 17(2), 19-32.

Umble, M.M., Srikanth, M.L., 1996, "Synchronous Manufacturing: Principles for World-Class Excellence", The Spectrum Publishing Company, Guilford, Connecticut.

Zijm, W.M.H., 1994, Capacity Planning, Lead Time Management, and shop Floor Scheduling, *The Proceedings of Eight International Working Seminar on Production Economics*, Pre Prints, Volume 2, Kongresszentum IGCS, IGLS/INSSBRUCK, Austria, February 21-25.