Rancangan Sistem Persediaan Bahan Baku Kain Pada Kondisi Demand Probabilistik dengan Kendala Luas Gudang* (Studi Kasus di CV. Visa Insan Mandani)

RENI AMARWATI ROMLI, ABUBAKAR, AMBAR HARSONO

Jurusan Teknik Industri Institut Teknologi Nasional (Itenas) Bandung

Email: reniamarwatiromli@yahoo.com

ABSTRAK

Persediaan bahan baku yang memadai akan menjamin kelancaran proses produksi walaupun permintaan konsumen berfluktuatif sebaliknya, kekurangan persediaan bahan baku akan menghambat proses produksi dan dapat mengakibatkan konsemen memilih produk pesaing. CV. Visa Insan Madani adalah sebuah perusahaan garment yang memproduksi baju muslim. Sampai saat ini perusahaan memesan bahan baku kepada beberapa pemasok kain berdasarkan intuisi. Kadang-kadang jumlah bahan baku melebihi kapasitas gudang, sehingga kelebihan bahan baku disimpan diarea produksi. Hal ini dapat menyebabkan gangguan terhadap proses poroduksi, bahan baku rusak, dan kehilangan bahan baku. Model persedian yang diusulkan dalam permasalahan ini adalah Model Q dan Model P, dilihat dari segi ongkos Model P lebih baik dibanding Model Q namun dilihat dari segi pelaksanaannya Model Q lebih mudah dibandingkan Model P.

Kata kunci: Persediaan Bahan Baku, Model Q, Model P

ABSTRACT

Adequate inventory of raw material supports the smootness of production process altough consumers demand for the product is fluctuated, deficiency of raw material can hindertheconsumers to choose the competitor product. CV. Visa Insan Madani a garment factory that produce moslem clothes, the factory ordered raw material from supplier based on intuiting some time raw material exceed warehouse capacity, so the excess raw material ottred in production area, this arangement disturbed production proses, caused damage or loss of raw material. The model used in this research is Model Q and Model P. Based on total cost of iinventory. Model P is better than Model Q, but the application of Model Q easier compared to Model P.

Keywords: Inventory of Raw Materials, Model Q, Model P

_

Makalah ini merupakan ringkasan dari Tugas Akhir yang disusun oleh penulis pertama dengan pembimbingan penulis kedua dan ketiga. Makalah ini merupakan draft awal dan akan disempurnakan oleh para penulis untuk disajikan pada seminar nasional dan/atau jurnal nasional.

1. PENDAHULUAN

1.1 Pengantar

Kelancaran proses produksi dipengaruhi oleh ketersediaan bahan baku yang cukup. Penumpukan bahan baku digudang diakibatkan dari persediaan bahan baku yang berlebih yang mengakibatkan ongkos simpan semakin besar, sedangkan apabila persediaan bahan baku kurang maka perusahaan mengeluarkan ongkos pemesanan kembali, kedua peristiwa ini mengakibatkan perusahaan mengeluarkan ongkos lebih besar.

CV. Visa Insan Madani adalah sebuah perusahaan yang bergerak pada bidang *garment*. Selama ini perusahaan melakukan pemesanan bahan baku kain berdasarkan intuisi, sehingga seringkali terjadi penumpukan bahan baku diakibatkan pemesanan bahan baku yang terlalu banyak dan menyebabkan ongkos persediaan yang semakin besar, serta penumpukan bahan baku yang dapat menghambat jalannya produksi, dapat merusak bahan baku kain dan terjadi kehilangan bahan baku karena penempatan bahan baku yang tidak rapih.

Menghindari terjadinya penumpukan dan kekurangan bahan baku maka diperlukan perencanaan pengendalian persediaan bahan baku, agar bahan baku yang dipesan optimal dengan memperhatikan kapasitas gudang bahan baku. Model pengendalian persediaan yang digunakan untuk memecahkan masalah adalah model persediaan yang dikembangkan oleh Hadley dan Within (1963).

1.2 Identifikasi Masalah

CV. Visa Insan Madani adalah sebuah perusahaan yang bergerak pada bidang *garment*, dengan baju busana muslim sebagai produk akhir. Bahan baku yang digunakaan perusahaan berasal dari supplier yang berbeda namun jarak antara supplier berdekatan. Terdapat 11 jenis kain yang digunakan dalam membuat 101 model busana muslim. Permintaan produk ini bersifat probabilistik karena permintaan yang probabilistik maka kebutuhan bahan baku juga bersifat probabilistik, dikatakan probabilistik karena permintaan tidak pasti dan berfluktasi sesuai dengan kebutuhan konsumen, walaupun demikian ketidak pastian ini memiliki pola distribusi yang dapat diprediksi.

Selama ini perusahaan melakukan pemesanan bahan baku ke supplier berdasarkan intuisi, sehingga seringkali pemesanan bahan baku melebihi kapasitas gudang dan mengakibatkan munculnya masalah seperti: penyimpanan bahan baku di area produksi yang mengganggu produktivitas karyawan, biaya penyimpanan semakin tinggi, terjadinya pencurian bahan baku, dan turunnya kualitas bahan baku karena bahan baku menjadi usang.

Dari kendala yang terdapat di perusahaan maka diperlukan cara pengendalian persediaan bahan baku yang memperhatikan kapasitas gudang penyimpanan, namun tetap dapat memenuhi kebutuhan akan permintaan produk.

2. STUDI LITERATUR

Persediaan merupakan barang atau bahan, baik berupa bahan mentah, bahan setengah jadi, atau barang jadi yang dengan sengaja disimpan untuk digunakan di masa yang akan datang. Menurut Nasution (2006) ongkos persediaan adalah semua pengeluaran dan kerugian yang ditimbulkan akibat persediaan. Ongkos tersebut adalah biaya pembelian, biaya pemesanan, biaya penyimpanan, dan biaya kekurangan persediaan.

a. Model Q

Model persediaan ini sering disebut juga *Fixed Order Size Inventory System* dan *Countinous Review System*. Model persediaan ini disarankan untuk melakukan monitoring secara intensif atas status inventori untuk mengetahui kapan saat pemesanan dilakukan (r) dan ukuran lot pemesanan (Q) selalu tetap untuk setiap kali pemesanan dilakukan (Bahagia,2006). Asumsi dari metode ini:

- 1. Permintaan bersifat probabilistik dan rata-rata permintaan yang datang konstan sepanjang waktu.
- 2. Pemesanan barang sejumlah Q dilakukan saat persediaan mencapai titik pemesanan kembali (*Reorder Point*).
- 3. Dalam satu siklus pemesanan hanya terjadi satu kali pemesanan.
- 4. Jika terjadi pemesanan untuk multi item diasumsikan item-item tersebut tidak saling bergantung (*independent*).
- 5. Harga satuan barang konstan dan tidak dipengaruhi oleh ukuran pemesanan.

b. Model P

Sistem persediaan ini disebut juga sebagai *Fixed Order Interval Inventory System*, Model P, dan *Periodic Review System*. Model ini melakukan pemesanan barang hanya pada interval waktu tertentu yang tetap (t). Keputusan untuk melakukan pemesanan barang dan penentuan jumlah barang yang dipesan hanya dilakukan pada interval waktu tertentu. Jumlah pemesanan (Q) dapat bervariasi dari satu periode ke periode berikutnya (Bahagia, 2006). Karakteristik utama dari Model P ini adalah:

- 1. Pemesanan dilakukan menurut suatu selang interval waktu yang tetap (T)
- 2. Jumlah barang yang dipesan merupakan selisih antara tingkat persediaan maksimum dengan persediaan yang ada pada saat pemesanan dilakukan.

c. Model Pengendalian Persedian dengan Kendala Luas Gudang

Pada model ini menggunakan persamaan Model Q dengan kasus *lost sales* dan berdistribusi normal. Luas lantai tempat penyimpanan persediaan adalah L satuan luas dan tiap unit iten ke-I memerlukan tempat penyimpanan seluas l_i satuan luas. Jika Q_I adalah kuantitas pemesanan item I maka kendala luas tempat penyimpanan persediaan mempunyai bentuk pertidaksamaan sebagai berikut:

$$\sum_{i=1}^{n} l_i Q_i \le L$$

$$l_1 Q_1 + l_2 Q_2 + \dots + l_n Q_n \le L$$
(1)

Prosedur untuk menyelesaikan masalah dengan kendala luas gudang, pertama menyelesaikan masalah tanpa kendala luas gudang yaitu dengan menghitung ukuran lot pemesanan optimal dari masing-masing item. Apabila pemesanan optimal memenuhi kendala seperti pada persamaan 1 maka Q adalah optimal sehingga dapat dikatakan kendala tidak aktif (aman). Apabila sebaliknya dimana Q tidak memenuhi kendala maka dikatakan kendala menjadi aktif maka untuk mendapatkan Q yang optimal digunakan teknik pengali *lagrange*.

$$J = \sum_{i=1}^{n} C_{i} \lambda_{i} + A_{i} \frac{\lambda_{i}}{Q_{i}} + h_{i} \left[\frac{1}{2} Q_{i} + r_{i} - \mu_{i} + \eta(r_{i}) \right] + \pi_{i} \frac{\lambda_{i}}{Q_{i}} \eta(r_{i}) + \theta \left(\sum_{i=1}^{n} l_{i} Q_{i} - L \right)$$

$$J = OT + \sum_{i=1}^{n} l_{i} Q_{i} - L$$
(2)

Dimana parameter θ adalah suatu pengali *lagrange*. Untuk mendapkan Q dan r optimal, maka syarat harus terpenuhi adalah:

Rancangan Sistem Persediaan Bahan Baku Kain Pada Kondisi Demand Probabilistik dengan Kendala Luas Gudang (Studi Kasus di CV. Visa Insan Mandani)

$$\frac{\partial J}{\partial O} = \frac{\partial J}{\partial r} = 0$$

Untuk mendapatkan Q optimum:

$$Q_i = \sqrt{\frac{2\lambda_i(A_i + \pi_i\eta(r_i))}{h_i + 2\theta l_i}}$$
(3)

Untuk mendapatkan r optimal

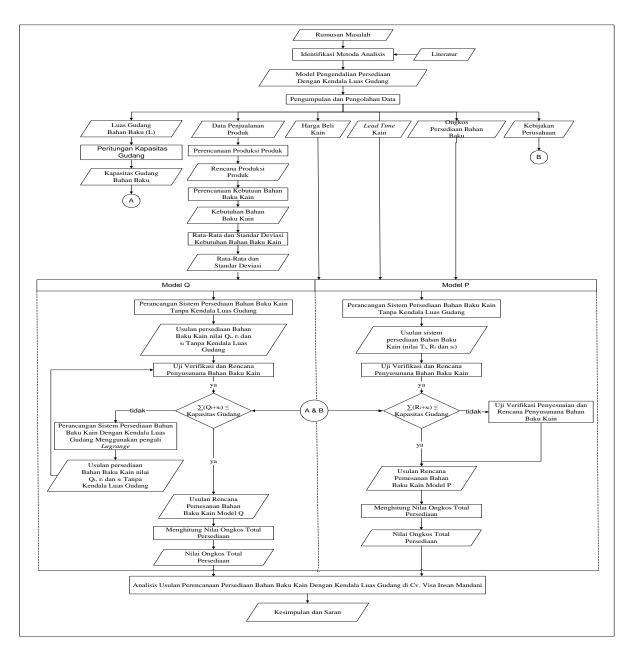
$$F(r_i) = \frac{h_i}{h_i + \pi_i \frac{\lambda_i}{Q_i}} = \frac{h_i Q_i}{h_i Q_i + \pi_i \lambda_i}$$

$$\tag{4}$$

Menyelesaikan masalah dengan kendala aktif dengan cara mengalikan *langrage* (θ). Nilai (θ) dicoba-coba sehingga didapatkan persamaan 2.

Langkah-langkah perhitungan untuk mendapatkan nilai Q dan r optimal sebagai berikut:

- 1. Tentukan nilai awal $\theta > 0$.
- 2. Hitung Q_i dengan menggunakan persamaan (2.49) untuk $\eta(r_i) = 0$.
- 3. Subtitusi Q_i ke persamaan (4.51), sehingga didapat harga r_i dengan menggunakan bantuan tabel normal. Harga r_i disubtitusikan kepersamaan $\eta(r_i)$.
- 4. Subtitusikan nilai $\eta(r_i)$ kepersamaan (4.48) sehingga didapat nilai Q_i^* .
- 5. Subtitusikan lagi nilai Q_i ke persamaan(4.49) sehingga diperoleh harga r_i dengan menggunakan bantuan tabel normal.
- 6. Ulangi langkah diatas sampai diperoleh nilai $r_{m+1} > r_m$ atau $r_{m+1} = r_m$. Nilai Q dan r pada interasi terakhir merupakan solusi optimal.
- 7. Ulangi langkah 1-6 untuk nilai θ lainnya. Nilai Q,r, θ diperoleh jika persamaan $\sum_{i=1}^n l_i Q_i \le L$ terpenuhi.


III. METODOLOGI PENELITIAN

Metodologi penelitian berisikan input, proses, dan analisis. Inputan yang dibutukan dalam perencanaan persediaan bahan baku kain antara lain luas gudang, data penjualanan produk, harga beli kain, ongkos persediaan, dan kebijakan persedian perusahaan. Proses perencanaan persediaan bahan baku menggunakan pendekatan Model Q dan Model P dari Hadley dan Within. Kerangka pemecahan masalah pada penelitian ini dapat dilihat pada Gambar 1.

IV. HASIL DAN PEMBAHASAN

Dalam penelitian ini berupa hasil perhitungan perencanaan persediaan bahan baku dengan membandingkan Model Q dan model P yang dikembangkan oleh Hadley dan Within (1963). Pada model Q persediaan bahan baku dengan kendala luas gudang dikembangkan Senator Nur Bahagia (2006). Kebutuan poduk selama satu tahun dapat dilihat pada Tabel 1.

Untuk menghindari terjadinya penumpukan produk jadi digudang maka dilakukan perencanaan proses produksi. Perencanaan produksi produk dapat dapat dilihat pada Tabel 2.

Gambar 1. Flowchart Metodologi Penelitian

Tabel 1. Kebutuan Poduk Selama Satu Tahun

Jenis Bahan	Januari	Februari	Maret	April	Mei	Juni	Juli	Agustus	September	Oktober	Nopember	Desember
Katun	90	104	118	84	88	811	128	242	93	193	897	144
Silky	89	65	168	137	122	160	880	390	59	31	963	190
Dobby	89	72	48	53	45	746	854	360	81	137	139	139
KPC	271	237	380	319	261	939	289	3550	217	487	626	590
KCL 0165	103	61	202	103	126	145	179	1746	130	173	163	197
KCL 0265	89	66	58	38	63	766	173	268	73	156	868	148
KSL 008	70	69	57	89	107	73	777	972	69	73	111	45
KSL 0324	101	76	145	82	98	83	58	1101	100	107	905	102
Salur	88	84	40	62	54	752	943	287	69	160	842	114
Rayon	93	94	160	123	142	141	1543	268	74	109	135	119
KSM	243	200	164	148	121	1609	1331	1888	345	465	2004	472

Tabel 2. Perencanaan Produksi Produk

Jenis Bahan	Desember	Januari	Februari	Maret	April	Mei	Juni	Juli	Agustus	September	Oktober	Nopember
Katun	90	104	838	84	88	91	128	242	93	913	177	144
Silky	89	65	168	137	122	880	160	390	59	751	243	190
Dobby	89	72	588	233	45	746	134	360	81	137	139	139
KPC	271	237	380	1039	261	939	1829	1401	258	540	626	590
KCL 0165	103	61	202	103	666	325	809	396	130	173	163	197
KCL 0265	89	66	58	758	63	46	173	268	73	876	148	148
KSL 008	70	69	57	89	647	613	417	252	69	73	111	45
KSL 0324	101	76	145	82	98	83	778	381	100	557	455	174
Salur	88	84	760	62	54	752	223	287	429	520	122	114
Rayon	93	94	160	123	862	861	103	268	74	109	135	119
KSM	243	200	164	768	1661	349	1151	1168	875	655	1104	472

Dari data perencanaan produksi produk dilakukan perancangan kebutuhan bahan baku. perencanaan kebutuhan bahan baku didapatkan dari konversi ukuran baju terhadap kebutuhan kain per ukuran baju. Kebutuhan bahan baku berdasarkan ukuran baju dapat dilihat pada Tabel 3.

Tabel 3. Kebutuhan Bahan Baku Berdasarkan Ukuran Baju

Ukuran	Gamis (yard)	Koko/Tunik (yard)
S	3	1,8
М	3	1,8
L	3	2,2
XL	3	2,2

Perencanaan kebutuhan bahan baku dapat dilihat pada Tabel 4.

Tabel 4. Merancang Produksi Produk

Jenis Bahan	Desember	Januari	Februari	Maret	April	Mei	Juni	Juli	Agustus	September	Oktober	Nopember	Total
Katun	270	312	1738	226,4	224,4	183,8	253,6	482	233,4	1875	400,2	374,8	6573,6
Silky	175,4	131,8	334,8	269,8	246,8	1758	321,2	784	117	1502,2	579,8	472,4	6693,2
Dobby	176,2	146,8	1140,8	501	93	1492,4	264,8	715,2	162,6	276,6	277	279,8	5526,2
KPC	540,2	472,6	761,6	2796,6	517,4	1881,8	3582,2	2999,4	671,6	1256,4	1458	1369,2	18307
KCL 0165	309	183	450	241	1340,4	721,8	1637	807,2	289,6	406,6	383	475,8	7244,4
KCL 0265	198,2	153,2	361,4	219,2	248,8	216,6	1614	819,4	198,8	1059	964,6	349,2	6402,4
KSL 008	267	198	174	1554	189	138	344,2	532,4	147,4	1755,2	296,4	294,4	5890
KSL 0324	138	138,6	139,8	216,2	1294,6	1202,2	963	605,6	165,4	175,4	255	88,6	5382,4
Salur	264	252	1560	186	162	1536	443,4	576,2	1219	1402,4	242,4	227,2	8070,6
Rayon	186,2	188,8	318,4	243	1722,4	1724,6	205,4	672	187,6	273,4	327,8	287,8	6337,4
KSM	729	600	492	2304	4263	1047	3053,8	2664	1794,2	1728,2	2277,6	983,6	21936,4

Data ongkos yang dibutuhkan dalam perencanaan persediaan bahan baku terdiri dari ongkos simpan yang diambil dari biaya investasi, ongkos kekurangan persediaan berasal dari laba yanghilang, ongkos sistemik berasa dari depresiasi bangunan dan harga beli kain. Data-data yang dibutuhkan dalam perencanaan persediaan bahan baku dapat dilihat pada Tabel 5.

4.1 Model Q

Perencanaan sistem persediaan bahan baku kain pada model ini dilakukan dengan dua cara pertama menghitung perencanaan sistem persediaan bahan baku kain tanpa kendala kapasitas gudang. Apabila dalam jumlah pemesanan (Q) dan *safety stock* (s) melebihi kapasitas gudang maka dilakukan cara ke dua yaitu perencanaan sistem persediaan dengan

kendala kapasitas gudang. Masing-masing cara tersebut menghasilkan nilai Qi, reorder point (ri) dan si. Pada model ini pemesanan dilakukan apabila bahan baku yang telah digudang mencapai nilai (r) yang telah ditentukan dan jumlah pemesanan selalu sama setiapmelakukan pemesanan. Nilai Qi, ri dan si didapatkan dari hasil iterasi, iterasi berhenti apabila nilai r dari hasil iterasi selanjutnya lebih besar dari nilai r iterasi sebelumnya atau nilai r tidak berubah dari itersasi sebelumnya. Contoh perhitungan katun pada iterasi 1, jumlah pemesanan:

$$Q_i = \sqrt{\frac{2\lambda_i A_i}{h_i + (2\theta l_i)}} = \sqrt{\frac{2(6573.6 \text{ yard})(Rp.83.800)}{Rp.826/\text{yard} + (2 \text{ x 690 x 0.25})}}$$

$$Q_1 = 1038 \, yard$$

Peluang terjadinya kekurangan

$$F(r_i) = \frac{h_i Q_i}{h_i Q_i + \pi_i \lambda_i}$$

$$= \frac{(Rp. 826/\text{yard})(1038 \text{ yard})}{(Rp. 826/\text{yard} \times 1038 \text{yard}) + (Rp. 13,315 \times 6573,6 \text{ yard})}$$

$$F(r_i) = 0.01 \Rightarrow Z_{Tabsl} = 2.33$$

Titik pemesanan kembali

$$Z = \frac{r_i - \mu_i}{\sigma_i}$$

$$2,33 = \frac{r_i - 136,95}{297,44}$$

 $r_1 = 828,9$ yard

Untuk mencari ordinat kurva dibawah distribusi normal:

$$\phi\left(\frac{r_1 - \mu_1}{\sigma_1}\right) = \left(\frac{1}{\sqrt{2\pi}}\right)e^{-Z^2/2} = \left(\frac{1}{\sqrt{2*141,38}}\right)e^{-(2,37)^2/2} = 0.03$$

Jumlah terjadinya kekurangan

$$\eta(r_i) = (\mu_1 - r_1)\Phi\left(\frac{r_1 - \mu_1}{\sigma_1}\right) + \sigma_1\phi\left(\frac{r_1 - \mu_1}{\sigma_1}\right)$$

$$\eta(r_1) = (136,95 \text{ yard} - 828,9 \text{ yard}) \times 0.01 + 297,44 \text{ yard} (0.03)$$

$$\eta(r_1) = 1$$
yard

Safety stock

$$S = r_1 - \mu + \eta(r_1)$$

$$S = 828.9 \text{ yard} - 136.95 \text{ yard} + 1 \text{ yard}$$

$$S = 693 \text{ yard}$$

Perioda antara pemesanan

Pemesanan/gulung =
$$\frac{Q}{91} = \frac{1038 \text{ yard}}{91 \text{ yard/gulung}}$$

= 11,41 Gulung \approx 12 Gulung \approx 1092 yard

$$T = \frac{Q_1}{\lambda} = \frac{1092 \text{ yard}}{6573,6 \text{ yard}}$$

= 0,17tahun

Frekuensi pemesanan

$$f = \frac{1}{T} = \frac{1}{0,17}$$

f = 7 kali pemesanan

Tabel 5. Data-Data yang Digunakan

Jenis Bahan	Kebutuhan Bahan Baku per Tahun (Yard)	Harga/yard (Rp)	Ongkos Simpan/ yard (Rp)	Ongkos Kekurangan (yard) (Rp)	Rata-rata kebutuhan (yard/bulan)	Standar Deviasi Kebutuhan (Yard/bulan)	Lead Time (Minggu)	Luas Kain (m2)	Rata-rata kebutuhan selama <i>lead time</i> (yard/ead time)	Standar Deviasi Kebutuhan selama lead time (Yard/lead time)
	λ	С	h	π	μ	σ			μ	σ
Katun	6573,60	15.000	826	13.315	547,80	594,87	1	0,25	136,95	297,44
Silky	6693,20	15.000	826	12.384	557,77	539,25	1	0,27	139,44	269,63
Dobby	5526,20	13.500	826	10.999	460,52	440,62	1	0,27	115,13	220,31
KPC	18307,00	15.000	826	12.685	1525,58	1072,58	1	0,19	381,40	536,29
KCL 0165	7244,40	12.500	826	12.350	603,70	456,01	2	0,26	301,85	322,45
KCL 0265	6402,40	17.000	826	12.363	533,53	469,44	1	0,27	133,38	234,72
KSL 008	5890,00	14.500	826	12.553	490,83	555,82	2	0,27	245,42	393,03
KSL 0324	5382,40	14.500	826	12.218	448,53	450,93	1	0,27	112,13	225,47
Salur	8070,60	15.000	826	13.665	672,55	576,09	1	0,27	168,14	288,05
Rayon	6337,40	13.000	826	12.624	528,12	573,57	1	0,27	132,03	286,78
KSM	21936,40	13.000	826	12.685	1828,03	1143,92	1	0,26	457,01	571,96

Rekapitulasi iterasi Model Q Tanpa Kendala dapat dilihat pada Tabel 6

Tabel 6. Rekapitulasi iterasi Model Q Tanpa Kendala

Bahan	Qi	F(r1)	Ztabel	ri	φ(z)?	η(ri)	si	Ti	fi	Interasi	yard / Gulung	Q gulung	S gulung	Jumlah gulung
Katun	1251,80	0,01	2,26	808,30	0,03	1,20	672,60	0,19	6,00	2,00	91	14	8	22
Silky	1248,60	0,01	2,26	748,00	0,03	1,10	609,70	0,19	6,00	2,00	99	13	7	20
Dobby	1132,80	0,02	2,17	593,20	0,04	1,20	479,30	0,22	5,00	2,00	100	12	5	17
KPC	1927,40	0,01	2,46	1699,20	0,02	1,20	1319,00	0,11	10,00	1,00	70	28	19	47
KCL 0165	1315,30	0,01	2,26	1029,70	0,03	1,30	729,20	0,18	6,00	2,00	95	14	8	22
KCL 0265	1221,00	0,01	2,23	655,90	0,03	1,10	523,60	0,20	5,00	2,00	99	13	6	19
KSL 008	1231,90	0,01	2,20	1109,00	0,04	1,90	865,50	0,21	5,00	3,00	100	13	9	22
KSL 0324	1118,70	0,01	2,20	607,50	0,04	1,10	496,50	0,22	5,00	2,00	100	12	5	17
Salur	1370,40	0,01	2,33	838,20	0,03	1,00	671,10	0,17	6,00	2,00	100	14	7	21
Rayon	1232,30	0,01	2,23	770,50	0,03	1,30	639,80	0,21	5,00	2,00	100	13	7	20
KSM	2278,80	0,01	2,46	1862,50	0,02	1,30	1406,80	0,10	10,00	2,00	95	24	15	39
						T	otal							266,00

Dari hasil perhitungan persediaan tanpa kapasitas gudang memenuhi, karena kapasitas gudang dapat menampung 272 gulung kain sedangkan hasil perencanaan awal periode menghasilkan 266 gulung sehingga kendala tidak aktif. Namun dari hasil perhitungan uji verifikasi ditemukan beberapa perioda yang melebihi kapasiats gudang maka dilakukan perhitungan dengan menggunakan pengali *Lagrange* nilai *Lagrange* yang digunakan 400 dan didapatkan hasil pada Tabel 7.

Tabel 7. Hasil Perhitungan Model Q dengan Kendala

Jenis Bahan	Qi	F(r1)	Ztabel	ri	φ (z)□	η(ri)	si	Ti	fi	Interasi	yard / Gulung	Q gulung	S gulung	Gulung
Katun	1060,00	0,01	2,37	840,60	0,02	0,90	704,60	0,15	7	2,00	91	12	8	20
Silky	989,10	0,01	2,33	766,70	0,03	1,00	628,30	0,16	7	1,00	99	10	7	17
Dobby	949,00	0,01	2,26	612,40	0,03	0,90	498,20	0,16	6	2,00	100	10	5	15
KPC	1707,20	0,01	2,51	1728,60	0,02	1,00	1348,20	0,10	10	1,00	70	25	20	45
KCL 0165	1108,50	0,01	2,33	1052,00	0,03	1,10	751,30	0,15	8	2,00	95	12	8	20
KCL 0265	1022,90	0,01	2,29	671,00	0,03	0,90	538,50	0,16	7	1,00	99	11	6	17
KSL 008	1012,70	0,01	2,29	1145,60	0,03	1,50	901,70	0,17	6	2,00	100	11	10	21
KSL 0324	935,90	0,01	2,26	621,00	0,03	0,90	509,80	0,17	6	2,00	100	10	6	16
Salur	1153,10	0,01	2,37	849,50	0,02	0,90	682,30	0,14	7	2,00	100	12	7	19
Rayon	1030,900	0,011	2,290	788,900	0,029	1,100	658,000	0,163	7	1,000	100	11	7	18
KSM	1888,30	0,01	2,51	1893,90	0,02	1,10	1438,00	0,09	12	1,00	95	20	16	36
						Total								244

Dari hasil perhitungan persediaan dengan kapasitas gudang, *stock* bahan baku yang ada digudang memenuhi karena kapasitas gudang yangdapat menampung 272 gulung kain

sedangkan hasil perencanaan awal periode menghasilkan 244 gulung sehingga kendala tidak aktif dan dari hasil perhitungan uji verifikas tidak ditemukan perioda yang melebihi kapasiats gudang. Ongkos persediaan bahan baku dipengaruhi oleh ongkos pembelian, ongkos pemesanan, ongkos penyimpanan, dan ongkos kekurangan persediaan. Perhitungan ongkos untuk Model Q dengan memperhatikan kendala kapasitas gudang dapat dilihat pada tabel 5. Ongkos pesanyang dilakukan pada supplieryangsama dengan waktu pemesanan yang sama akan digabungkan. Perhitungan ongkos persediaan dapat dilihat dari Tabel 8.

Jenis Bahan	OB (Rp)	OS (Rp)	OK (Rp)	OP (Rp)	OT (Rp)
Katun	99.645.000	693.516	72.137	_	
Silky	100.980.000	582.211	83.727	_	
Dobby	75.600.000	539.140	54.705	_	
KPC	275.100.000	891.170	132.704	_	
KCL 0165	91.437.500	841.932	86.331	_	
KCL 0265	109.395.000	563.986	65.417	5.447.000	1.420.235.600
KSL 008	85.550.000	996.267	100.820	_	
KSL 0324	78.300.000	556.140	59.187	_	
Salur	121.500.000	642.433	82.714	_	
Rayon	83.200.000	670.542	80.003	_	
KSM	285.285.000	839.922	161.098	_	

Tabel 8. Perhitungan Ongkos Persediaan

4.2 Model P

Perencanaan sistem persediaan bahan baku kain dilakukan dengan cara menghitung perencanaan sistem persediaan bahan baku kain. Apabila dalam jumlah *stock* bahan baku melebihi kapasitas gudang maka dilakukan penyesuaian dan apabila terjadi kekurangan persediaan pada periode tertentu maka dilakukan pemesanan tambahan atau melakukan pemesanan melebihi inventori maksimal. Model ini melakukan pemesanan bahan baku hanya pada interval waktu tertentu yang tetap (t). Jumlah pemesanan (Q) dapat bervariasi dari satu periode ke periode berikutnya.Output dari model P adala nilai R, t dan s didapat dari hasil iterasi.Iterasi berhenti apabila ongkos total dari hasil iterasi selanjutnya lebih besar dari ongkos total iterasi sebelumnya atau ongkos total tidak berubah dari itersasi sebelumnya. Contoh iterasi 1 pada jenis bahan katun.

$$T = \sqrt{\frac{2A}{\lambda h}}$$

$$T = \sqrt{\frac{2 \times 83.800}{6573.6 \times 826}} = 0.18 \text{ tahun}$$

 $T = 0.18 \times 52 = 10 \text{ minggu}$

Interasi T = 0,18 tahun ≈ 10 minggu

$$\mu L+T = 547,80 \text{y} \text{ard } x \left(\frac{10}{4} + \frac{1}{4}\right)$$

$$= 1506,45 \text{y} \text{ard}$$

$$\sigma L+T = \sqrt{594,87 \ x \frac{10+1}{4}} = 40,45$$

Peluang terjadinya kekurangan

$$H(R_i) = \frac{h_1 T_1}{h_1 T_1 + \pi_1}$$

$$H(R_1) = \frac{Rp.826/\text{yard } x^{10}/_{52}}{(Rp.843/\text{yard } x^{10}/_{52}) + Rp.13315/\text{yard}} = 0.01 \implies Z_{Tabel} = 2.26$$

Tingkat pemesanan maksimum

$$Z = \frac{R_i - \mu_{L+T}}{\sigma_{L+T}}$$

$$2,26 = \frac{R_1 - 1506,45 \text{ yard}}{40,45 \text{ yard}}$$

$$R_1 = 1598,02$$
yard

$$R_1 = \frac{1598,02 \text{ yard}}{91 \text{yard}/gulung} = 17,55 \text{ gulung} \approx 18 \text{ gulung} \approx 1638 \text{ yard}$$

Untuk mencari ordinat kurva dibawah distribusi normal:

$$\phi\left(\frac{R_1 - \mu_{L+T}}{\sigma_{L+T}}\right) = \left(\frac{1}{\sqrt{2\pi}}\right)e^{-Z^2/2} = \left(\frac{1}{\sqrt{2*4026}}\right)e^{-(2.26)^2/2} = 0.03$$

Jumlah kekurangan per siklus

$$\eta(R_i) = (\mu_L - R_i)\Phi\left(\frac{r_i - \mu_{L+T}}{\sigma_{L+T}}\right) + \sigma_{L+T} \phi\left(\frac{r_i - \mu_{L+T}}{\sigma_{L+T}}\right)
\eta(R_1) = (136,95 \text{ yard} - 1597,02 \text{yard})x0,01 + 37,36 \text{yard}(0,03)
= 2,32 \text{ yard}$$

Jumlah safetv stock

$$s_1 = R_1 - \mu_{L1} - T\lambda + \eta(R_1)$$

$$s_1 = 1597,02 \text{ yard} - 136,95 \text{yard} - (\frac{10}{52} \times 6573,60) + 2,32 \text{yard}$$

$$s = 199,24yard$$

$$s_1 = \frac{198,96 \text{yard}}{91 \text{ yard} / gulung} = 2,19 \approx 3 \text{ gulung} = 273 \text{ yard}$$

$$f_1 = \frac{1}{Tminggu} \times 52$$

$$f_1 = \frac{1}{10} x 52 = 6 \text{ kali pemesanan}$$

Ekspetasi ongkos pesan

$$OP_1 = A \times f = Rp.83.800 \times 6 = Rp.502.800$$

Ekspetasi ongkos simpan

$$OS_1 = h_i \left[R_i - \mu_L - \frac{1}{2} T\lambda + \eta(R_i) \right]$$

$$OS_1 = Rp.\,815/\mathrm{yard}\left[1597,02\,\mathrm{yard} - 136,95\,\mathrm{yard} \,-\, \frac{1}{2}\, \frac{10}{52}\,\mathrm{x}\,\,6573,60\mathrm{yard} + 2,32\,\mathrm{yard}\right]$$

$$OS_1 = Rp.719.610$$

Ekspetasi ongkos kekurangan

$$OK_1 = \frac{\pi_i}{T_i} \eta(R_i)$$

$$OK_1 = \frac{Rp. 13315/yard}{10/52} 2,32 \text{ yard}$$

 $OK_1 = Rp. 160.744$

Ekspetasi ongkos total pesan, simpan dan kekurangan

$$OT_{OP,Os,OK} = OP + OS + OK$$

$$OT_{OP,Os,OK} = Rp.435.760 + Rp.719.610 + Rp.160.744 = Rp.1.316.114$$

Rekapitulasi iterasi Model P dapat dilihat pada tabel 9

Jenis Bahan Ttahun Tminggu R Gulung **S** Gulung Total 0,18 1638 273 10 21 Katun 0,19 10 1400 200 Dobby 16 9 Silky 0,17 1485 198 17 KPC 0,10 5 2450 280 39 KCL 0265 0,18 10 1584 198 18 KSL 008 0,19 10 1600 200 18 KSL 0324 0,19 10 1400 200 16 KCL 0165 0,15 8 1615 190 19 Salur 0,15 8 1600 200 18 1600 Rayon 0,18 10 200 18 **KSM** 0,10 2850 285 33

Tabel 9. Kebutuhan Bahan Baku Model P

Dari hasil perhitungan persediaan dengan kapasitas gudang, *stock* bahan baku yang ada digudang memenuhi karena kapasitas gudang yangdapat menampung 272 gulung kain sedangkan hasil perencanaan awal periode menghasilkan 233 gulung dan setela melakukan uji verifikasi harus memperhatikan kebijakan yang ditentukan oleh perusahaan. Total ongkos persediaan bahan baku tanpa usulan kebijakan dapat dilihat pada Tabel 10.

233

Total

Jenis Bahan OB (Rp) OS (Rp) OK (Rp) OP (Rp) OT (Rp) 99,645,000 Katun 502,800 Dobby 100,980,000 502,800 Silky 75,600,000 KPC 275,100,000 921,800 KCL 0265 91,437,500 KSL 008 6,145,958 304.181.957 502,800 172.076.181.532 109,395,000 KSL 0324 85,550,000 KCL 0165 78,300,000 586,600 121,500,000 Salur 502.800 Ravon 83,200,000 285,285,000 921.800 KSM

Tabel 10. Ongkos Persediaan

Total ongkos persediaan bahan baku tanpa usulan kebijakan pemesanan tambahan dapat dilihat pada Tabel 11. Total ongkos persediaan bahan bakudengan usulan kebijakan pemesanan melebihi inventori maksimum dapat dilihat pada Tabel 12.

Tabel 11. Ongkos Persediaan

Jenis Bahan	OB (Rp)	OS (Rp)	OK (Rp)	OP (Rp)	Op* (Rp)	OT (Rp)
Katun	99.645.000	_	160.744	502.800	83.800	
Dobby	100.980.000		134.071			
Silky	75.600.000	_	146.684	502.800	167.600	
KPC	275.100.000	_	175.033	921.800	167.600	
KCL 0265	91.437.500		141.100	502.800	83.800	
KSL 008	109.395.000	6.069.689	160.757		167.600	1.419.524.023
KSL 0324	85.550.000		138.024		167.600	
KCL 0165	78.300.000	_	137.313	586.600	167.600	
Salur	121.500.000		148.655		83.800	
Rayon	83.200.000	_	156.494	502.800	167.600	
KSM	285.285.000	_	180.759	921.800	83.800	

Tabel 12. Ongkos Persediaan

Jenis Bahan	OB (Rp)	OS (Rp)	OK (Rp)	OP (Rp)	OT (Rp)
Katun	99.645.000		160.744	502.800	
Dobby	100.980.000		134.071	302.800	
Silky	75.600.000		146.684	502.800	
KPC	275.100.000		175.033	921.800	
KCL 0265	91.437.500		141.100		
KSL 008	109.395.000	6.160.372	160.757	502.800	1.418.273.907
KSL 0324	85.550.000		138.024		
KCL 0165	78.300.000		137.313	586.600	
Salur	121.500.000		148.655	380.000	
Rayon	83.200.000		156.494	502.800	
KSM	285.285.000		180.759	921.800	

4.3 Analisis Kapasitas Gudang

Luas gudang bahan baku 4,5 m² penyimpanan kain di gudang dengan cara di tumpuk untuk semua jenis bahan kain dengan batas tertinggi tumpukan 17 gulung, tumpukan pertama berisi 16 gulung dan dengan tinggi tumpukan sebanyak 17 gulung, maka kapasitas maksimumnya adalah 272 gulung.

4.4 Analisis Model Q

Peritungan persediaan tanpa kendala luas gudang pada awal perioda kapasitas gudang terpenuhi karena bahan baku di gudang 266 gulung sedangkan kapasitas gudang 272 gulung. Namun ketika melakukan uji verifikasi dalam kurun waktu 1 tahun per minggu didapatkan beberapa perioda yang melebihi kapasitas gudang ini menunjukan solusi iterasi bukanlah solusi yang optimal maka dibutuhkan pengali *lagrange*, pengali *lagrange* ini dilakukan dengan cara coba-coba sehingga kapasitas gudang terpenuhi. Nilai *lagrange* yang digunakan dalam penelitian ini adalah 600. Hasil iterasi pengali *lagrange* pada awal perioda bahan baku yang di gudang 249 gulung dan dari hasil verifikasi didapatkan kapasitas gudang setiap periode memenui kapasitas gudang.

4.5 Analisis Model P

Hasil iterasi pada awal periode pemesanan didapatkan bahan baku digudang 239 gulung ini menunjukan kapasitas gudang masih terpenuhi. Setelah melakukan uji verifikasi kapasitas gudang masih terpenuhi namun terdapat beberapa perioda yang mengalami kekurangan persediaan maka dilakukan usulan kebijakan yaitu melakukan pemesanan bahan baku ketika stock kurang dari safty stock setelah dilakukan usulan kebijakan terdapat pemesanan tambahan bahan baku dan kapasitas gudang tetap terpenuhi.

4.6 Analisis Hasil Verifikasi Model Q Dan Model P

Pengujian ini bertujuan untuk meliat bahan baku yang berada digudang, apakah memenui kapasitas gudang, kapasitas gudang yang tersedia diperusahaan 272 gulung, penyimpanan kain di gudang dengan cara di tumpuk untuk semua jenis bahan kain dengan batas tertinggi tumpukan 17 gulung, rekapitulasi hasil verifikasi kapasitas maksimum dan minimum untuk setiap model dapat dilihat pada Tabel 11.

Tabel 11. Kapasitas Maksimum dan Minimum

Model	Q	PPemesanan Tambaan	Ppemesanan meebihi Inventori maksimum
Jumlah Persediaan Maksimum	272 Gulung	230 Gulung	241 Gulung
Jumlah Persediaan Minimum	207 Gulung	113 Gulung	95 Gulung

Tabel diatas menunjukan pada Model Q keadaan gudang lebih penuh dibandingkan dengan Model P hal ini dapat dilihat dari jumlah persediaan maksimum dan minimum kapasitas gudang yang terpakai.

4.7 Rekomendasi Model

Ongkos persediaan pada Model Q lebih besar hal ini disebabkan pada Model Q. Ongkos simpan yang dikeluarkan oleh Model Q lebih besar hal ini disebabkan pada Model Q jumlah *stock* yang ada digudang lebih besar sehingga ongkos simpan pun semakin besar.

Ongkos Persediaan pada model Pemesanan Tambahan lebih besar dibandingkan dengan Model Ppemesanan meebihi Inventori maksium karena memiliki ongkos pesan lebih besar hal ini dapat dilihat dari frekuensi pemesanan yang lebih banyak. Pada model Ppemesanan melebihi Inventori maksimum memiliki frekuensi pemesanan lebih kecil namun memiliki ongkos simpan yang lebih besar yang disebabkan bahan baku yang disimpan digudang lebih besar. Namun kedua Model P ini memiliki ongkos kekurangan persediaan lebih besar di bandingkan dengan Model Q hal ini disebabkan pada Model P dipengaruhi oleh *lead time* dan frekuensi pemesanan. Bila dilihat dari segi biaya, maka Model Ppemesanan melebihi Inventori maksimum lebih baik dari Model Q namun bila dilihat dari segi kemudahan dalam dalam pelaksanaan Model Q lebih baik dari kedua Model P.

V. KESIMPULAN

Kesimpulan yang dapat diambil dalam penelitian ini adalah:

- Pada perancangan sistem persediaan bahan baku pada Model Q tanpa kendala luas gudang ketika melakukan uji verifikasi terdapat beberapa periode yang melebihi kapasitas gudang. Oleh karena itu digunakan pengali *lagrange* nilai *lagrange* didapatkan dengan cara coba-coba. Nilai *lagrange* yang digunakan dalam menyelesaikan masalah ini adalah 600.
- 2. Hasil uji verifikasi pada Model P terdapat beberapa perioda yang terjadi kekurangan persediaan maka dilakukan kebijakan persediaan dengan melakukan pemesanan tambahan.
- 3. Ongkos yang dihasilkan pada Model Q Rp.1.420.235.600 sementara ongkos yang dihasilkan pada Model P tanpa kebijakan Rp. 172.076.181.532 Pemesanan Tambaan Rp. 1.419.524.023 dan Ppemesanan melebihi inventori maksimum Rp. 1.418.273.907.
- 4. Dilihat dari segi ongkos Model Ppemesanan meebihi Inventori maksimum lebih baik dari Model Q dan pada Model Pemesanan Tambahan sementara dilihat dari segi kemudahan dalam persediaan bahan baku Model Q lebih baik dari Model P.

REFERENSI

Hadley, G. dan Within, T.M. (1963). *Analysis of Inventory System*. Prentice-Hall Inc., Englewood Cliffs. New Jersey.

Narottamas, I. G. (2004). *Usulan Rancangan Sistem Persediaan Bahan Baku Pada Kondisi Demand Probabilistik Di CV. Muwatex*. Tugas Sarjana – Program Studi Teknik Industri, Institut Teknologi Nasional, Bandung.

Nasution, A. H. (2008). *Perencanaan dan Pengendalian Produksi*. Graha ilmu. Surabaya.

Nur Bahagia, Senator. (2006). Sistem Inventory. ITB. Bandung.

Rianty, Mailia. (2002). *Penerapan Model Pengendalian Persediaan dengan Kendala Anggaran*. Tugas Sarjana – Program Studi Teknik Industri, Institut Teknologi Nasional, Bandung.

Ristono, Agus. (2007). *Manajemen Persediaan*. Graha ilmu. Yogakarta.

Tersine, R.J. (1988). *Principles of Inventory and Materials Management*. Elsevier Science Publishing Co., Inc. New York.