Implementasi ShuffleNet V2 Pada Klasifikasi Penyakit Kulit Benign dan Malignant
Sari
ABSTRAK
Penyakit kulit atau kanker kulit disebabkan oleh adanya pertumbuhan abnormal sel kulit. Kanker kulit dapat diklasifikasikan menjadi dua kategori yaitu tumor kulit benign (jinak) atau malignant (tumor ganas) dengan karakteristik yang hampir sama. Beberapa metode telah dilakukan untuk membantu deteksi penyakit kulit salah satunya menggunakan computer vision. Pada penelitian ini, dirancang sebuah sistem yang dapat mengklasifikasi penyakit kulit benign dan malignant pada citra dermoskopi dengan menggunakan arsitektur ShuffleNet V2. Eksperimen dilakukan menggunakan 5 varian model ShuffleNet V2 berbeda dengan hyperparameter yaitu optimizer adam, learning rate 0.0001, batch size 16 dan epoch 40. Penelitian ini menunjukkan bahwa model ShuffleNetV2_1.0_1_373 menunjukkan performa terbaik dibandingkan dengan varian model lainnya berdasarkan hasil evaluasi accuracy, precision, recall dan f1-score dengan mencapai skor masing-masing sebesar 87,2%, 87,5%, 87,0%, dan 87,2%.
Kata kunci: CNN, Lightweight CNN, ShuffleNet V2, Kanker Kulit, benign, malignant
ABSTRACT
Skin disease, or skin cancer, is caused by the abnormal growth of skin cells. Skin cancer can be classified into two categories, namely benign (benign) or malignant (malignant tumor) skin tumors, with almost the same characteristics. With it, early detection and accurate diagnosis are needed to help identify benign and malignant skin cancer. Several methods have been developed to aid in the detection of skin diseases, one of which is the use of computer vision. In this study, a system was designed that could classify skin diseases on dermoscopy images using the ShuffleNet V2 architecture. In the experimental results, 5 variants of the ShuffleNet V2 model were tested using hyperparameters such as adam optimizer with a learning rate of 0.0001, batch size of 16, and epoch 40. The model with the best performance based on the evaluation results was the ShuffleNetV2_1.0_1_373 model, which obtained 87.2% accuracy, 87.5% precision, 87.0% recalls, and an 87.2% F1 score.
Keywords: CNN, Lightweight CNN, ShuffleNet V2, Skin Cancer, benign, malignant
Teks Lengkap:
PDFReferensi
Benyahia, S., Meftah, B., & Lézoray, O. (2021). Skin Lesion Classification Using Convolutional Neural Networks Based on Multi-Features Extraction. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13052 LNCS, 466–475. https://doi.org/10.1007/978-3-030-89128-2_45
Codella, N., Rotemberg, V., Tschandl, P., Celebi, M. E., Dusza, S., Gutman, D., … Halpern, A. (2019). Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC). 1–12. Retrieved from http://arxiv.org/abs/1902.03368
Hasan, M. R., Fatemi, M. I., Monirujjaman Khan, M., Kaur, M., & Zaguia, A. (2021). Comparative Analysis of Skin Cancer (Benign vs. Malignant) Detection Using Convolutional Neural Networks. Journal of Healthcare Engineering, 2021, 1–17. https://doi.org/10.1155/2021/5895156
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Liu, H., Yao, D., Yang, J., & Li, X. (2019). Lightweight convolutional neural network and its application in rolling bearing fault diagnosis under variable working conditions. Sensors (Switzerland), 19(22). https://doi.org/10.3390/s19224827
Luqman Hakim, Sari, Z., & Handhajani, H. (2021). Klasifikasi Citra Pigmen Kanker Kulit Menggunakan Convolutional Neural Network. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 379–385. https://doi.org/10.29207/resti.v5i2.3001
Ma, N., Zhang, X., Zheng, H. T., & Sun, J. (2018). Shufflenet V2: Practical guidelines for efficient cnn architecture design. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11218 LNCS, 122–138. https://doi.org/10.1007/978-3-030-01264-9_8
Manasa, K., & Murthy, D. G. V. (2021). Skin Cancer Detection Using VGG-16. European Journal of Molecular & Clinical Medicine, 8(1), 1419–1426.
Nguyen Quoc, T., & Truong Hoang, V. (2020). Medicinal Plant identification in the wild by using CNN. International Conference on ICT Convergence, 2020-Octob, 25–29. https://doi.org/10.1109/ICTC49870.2020.9289480
Rezaoana, N., Hossain, M. S., & Andersson, K. (2020). Detection and Classification of Skin Cancer by Using a Parallel CNN Model. Proceedings of 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering, WIECON-ECE 2020, 380–386. https://doi.org/10.1109/WIECON-ECE52138.2020.9397987
Tschandl, P., Rosendahl, C., & Kittler, H. (2018). Data descriptor: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, 5, 1–9. https://doi.org/10.1038/sdata.2018.161
Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 6848–6856. https://doi.org/10.1109/CVPR.2018.00716
Zhou, Y., Chen, S., Wang, Y., & Huan, W. (2020). Review of research on lightweight convolutional neural networks. Proceedings of 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference, ITOEC 2020, (Itoec), 1713–1720. https://doi.org/10.1109/ITOEC49072.2020.9141847
DOI: https://doi.org/10.26760/mindjournal.v8i1.65-76
Refbacks
- Saat ini tidak ada refbacks.
____________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2528-0902
diterbitkan oleh:
Informatika Institut Teknologi Nasional Bandung
Alamat : Gedung 2 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 181)Â Fax. 7202892
Email : mind.journal@itenas.ac.id
____________________________________________________________
Statistik Pengunjung :
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.