Implementasi Arsitektur InceptionResNet-v2 dan Squared Hinge Loss (Studi Kasus Klasifikasi Pose Yoga)
Sari
ABSTRAK
Aplikasi computer vision dapat digunakan untuk mengurangi kecelakaan yang terjadi ketika melakukan yoga akibat postur tubuh saat melakukan yoga yang tidak tepat. Pada penelitian, dilakukan sebagai langkah awal dalam penentuan model klasifikasi yang digunakan pada aplikasi yang dapat melakukan koreksi postur tubuh saat yoga. Penelitian dilakukan dengan mengklasifikasikan 11 studi kasus pose yoga dengan mengimplementasikan arsitektur InceptionResnet-v2 dan Squared Hinge Loss. Pada hasil yang didapatkan, model dengan kinerja terbaik diperoleh pada learning rate 0.0001, epoch 200, scaling residual InceptionResnet blok A 0.15, blok B 0.1, dan blok C 0.2, serta blok InceptionResnet 5 iterasi, B 10 iterasi, dan C 5 iterasi dengan kinerja arsitektur berdasarkan hasil evaluasi performa model didapatkan 89.98% accuracy, 90.38% precision, 89.79% recall, 89.83% F1 score, and 99% specificity pada pengujian 888 data uji dengan 11 pose yoga berbeda. Rata-rata pengujian waktu klasifikasi 1.301s dan loss 0.9494.
Kata kunci: CNN, InceptionResnet-v2, Klasifikasi Citra, Squared Hinge Loss, Yoga
ABSTRACT
Computer vision applications can be used to reduce accidents caused by improper posture while doing yoga. In this study, it was carried out as a first step in determining the classification model used in applications that can make corrections to a body posture while doing yoga. The research was conducted to classify 11 case studies of yoga poses by implementing the InceptionResnet-v2 architecture and Squared Hinge Loss. In the results, the model with the best performance was obtained at a learning rate of 0.0001, epoch 200, scaling residual InceptionResnet block A 0.15, block B 0.1, and block C 0.2, and 5 iteration of InceptionResnet block A, 10 iterations of block B, and 5 iterations of block C. The results of the model performance evaluation obtained 89.98% accuracy, 90.38% precision, 89.79% recall, 89.83% F1 score, and 99% specificity in the test of 888 test data with 11 different yoga poses and 1.301s average testing time of the classification model and loss 0.9494.
Keywords: CNN, Image Classification, InceptionResnet-v2, Squared Hinge Loss, Yoga
Teks Lengkap:
PDFReferensi
Agarap, A. F. (2017). An Architecture Combining Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Image Classification. 5–8. http://arxiv.org/abs/1712.03541
Agarwal, M., Gupta, S. K., & Biswas, K. K. (2020). Development of Efficient CNN model for Tomato crop disease identification. Sustainable Computing: Informatics and Systems, 28, 100407. https://doi.org/10.1016/j.suscom.2020.100407
Al-masni, M. A., Kim, D. H., & Kim, T. S. (2020). Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Computer Methods and Programs in Biomedicine, 190, 105351. https://doi.org/10.1016/j.cmpb.2020.105351
Dong, N., Zhao, L., Wu, C. H., & Chang, J. F. (2020). Inception v3 based cervical cell classification combined with artificially extracted features. Applied Soft Computing, 93, 106311. https://doi.org/10.1016/j.asoc.2020.106311
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 770–778. https://doi.org/10.1109/CVPR.2016.90
Jose, J., & Shailesh, S. (2021). Yoga Asana Identification: A Deep Learning Approach. IOP Conference Series: Materials Science and Engineering, 1110(1), 012002. https://doi.org/10.1088/1757-899x/1110/1/012002
Kumar, D., & Sinha, A. (2020). Yoga Pose Detection and Classification Using Deep Learning. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 160–184. https://doi.org/10.32628/cseit206623
Nguyen Quoc, T., & Truong Hoang, V. (2020). Medicinal Plant identification in the wild by using CNN. International Conference on ICT Convergence, 2020-Octob, 25–29. https://doi.org/10.1109/ICTC49870.2020.9289480
Peng, S., Huang, H., Chen, W., Zhang, L., & Fang, W. (2020). More trainable inception-ResNet for face recognition. Neurocomputing, 411, 9–19. https://doi.org/10.1016/j.neucom.2020.05.022
Rishan, F., Lanka, S., Nijabdeen, S., Lanka, S., Silva, B. De, Lanka, S., Rupasinghe, L., Lanka, S., Alawathugoda, S., Lanka, S., Liyanapathirana, C., & Lanka, S. (2020). Infinity Yoga Tutor : Yoga Posture.
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-ResNet and the impact of residual connections on learning. 31st AAAI Conference on Artificial Intelligence, AAAI 2017, 4278–4284.
Tang, Y. (2013). Deep Learning using Linear Support Vector Machines. http://arxiv.org/abs/1306.0239
Verma, M., Kumawat, S., Nakashima, Y., & Raman, S. (2020). Yoga-82: A new dataset for fine-grained classification of human poses. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 4472–4479. https://doi.org/10.1109/CVPRW50498.2020.00527
DOI: https://doi.org/10.26760/mindjournal.v7i2.124-138
Refbacks
- Saat ini tidak ada refbacks.
____________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2528-0902
diterbitkan oleh:
Informatika Institut Teknologi Nasional Bandung
Alamat : Gedung 2 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 181)Â Fax. 7202892
Email : mind.journal@itenas.ac.id
____________________________________________________________
Statistik Pengunjung :
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.