Sistem Otentikasi Biometrik Berbasis Sinyal EKG Menggunakan Convolutional Neural Network 1 Dimensi
Sari
ABSTRAK
Biometrik merupakan salah satu analisis karakteristik individu yang saat ini banyak digunakan, seperti sidik jari, pengenalan suara, dan pengenalan wajah. Metode biometrik tersebut masih memiliki kelemahan seperti mudah untuk dimanipulasi. Oleh karena itu, penelitian ini akan menggunakan sinyal Elektrokardiogram (EKG) sebagai salah satu metode biometrik. Sinyal EKG memiliki keunikan pada setiap individu sehingga sulit untuk dimanipulasi. Penelitian ini mengembangkan sistem otentikasi biometrik berbasis sinyal EKG. Data yang digunakan berasal dari ECG-ID database dengan jumlah 90 subjek. Sinyal EKG yang digunakan hanya menggunakan gelombang PQRST sebagai input model Convolutional Neural Network 1 Dimensi (CNN). Hasil akurasi yang diperoleh menunjukkan 92.2%. Dengan demikian, sistem yang dikembangkan memungkinkan digunakan sebagai otentikasi biometrik.
Kata kunci: Biometrik, Sinyal EKG, Convolutional Neural Network
ABSTRACT
Biometrics is analyses individual characteristics that are currently widely used, such as fingerprints, voice recognition, and face recognition. The biometric method still has weaknesses, such as being easy to manipulate. Therefore, this study will use an Electrocardiogram (ECG) signal as a biometric method. The ECG signal is unique to each individual, so it is not easy to manipulate. This study develops a biometric authentication system based on ECG signals. The data used comes from the ECG-ID database with a total of 90 subjects. The ECG signal used only PQRST waves as input for the 1-Dimensional Convolutional Neural Network (CNN) model. The accuracy results obtained show 92.2%. Thus, the developed system allows it to be used as biometric authentication.
Keywords: Biometric, ECG Signal, Convolutional Neural Network
Teks Lengkap:
PDFReferensi
Abdeljaber, O., Avci, O., Kiranyaz, M. S., Boashash, B., Sodano, H., & Inman, D. J. (2018). 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data. Neurocomputing, 275, 1308–1317. https://doi.org/10.1016/j.neucom.2017.09.069
Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., & Inman, D. J. (2017). Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. Journal of Sound and Vibration, 388, 154–170. https://doi.org/10.1016/j.jsv.2016.10.043
A.P. Nemirko, T. S. L. (2005). Biometric Human Identification Based on Electrocardiogram. XII-Th Russian Conference on Mathematical Methods of Pattern Recognition, MAKS Press, 387–390.
Avci, O., Abdeljaber, O., Kiranyaz, S., & Inman, D. (2017). Structural Damage Detection in Real Time: Implementation of 1D Convolutional Neural Networks for SHM Applications (pp. 49–54). https://doi.org/10.1007/978-3-319-54109-9_6
Baloglu, U. B., Talo, M., Yildirim, O., Tan, R. S., & Acharya, U. R. (2019). Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognition Letters, 122, 23–30. https://doi.org/10.1016/j.patrec.2019.02.016
Byeon, Y. H., Pan, S. B., & Kwak, K. C. (2020). Ensemble deep learning models for ECG-based biometrics. Proceedings of the 30th International Conference on Cybernetics and Informatics, K and I 2020, 1–5. https://doi.org/10.1109/KI48306.2020.9039871
Conference, J. (2018). DEEP CONVOLUTIONAL NEURAL NETWORK FOR ECG-BASED HUMAN IDENTIFICATION Bahareh Pourbabaee , Matthew Howe-Patterson , Eric Reiher , Frederic Benard.
Fu’adah, Y. N., Sa’idah, S., Wijayanto, I., Ibrahim, N., Rizal, S., & Magdalena, R. (2021). Computer Aided Diagnosis for Early Detection of Glaucoma Using Convolutional Neural Network (CNN) (pp. 467–475). https://doi.org/10.1007/978-981-33-6926-9_40
Hadiyoso, S., Rizal, A., & Aulia, S. (2019). ECG based person authentication using empirical mode decomposition and discriminant analysis. Journal of Physics: Conference Series, 1367, 012014. https://doi.org/10.1088/1742-6596/1367/1/012014
Hamza, S., & Ayed, Y. Ben. (2020). Svm for human identification using the ECG signal. Procedia Computer Science, 176, 430–439. https://doi.org/10.1016/j.procs.2020.08.044
Kim, J. S., Kim, S. H., & Pan, S. B. (2020). Personal recognition using convolutional neural network with ECG coupling image. Journal of Ambient Intelligence and Humanized Computing, 11(5), 1923–1932. https://doi.org/10.1007/s12652-019-01401-3
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151, 107398. https://doi.org/10.1016/j.ymssp.2020.107398
Kiranyaz, S., Ince, T., Hamila, R., & Gabbouj, M. (2015). Convolutional Neural Networks for patient-specific ECG classification. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2608–2611. https://doi.org/10.1109/EMBC.2015.7318926
Li, Y., Pang, Y., Wang, K., & Li, X. (2020). Toward improving ECG biometric identification using cascaded convolutional neural networks. Neurocomputing, 391, 83–95. https://doi.org/10.1016/j.neucom.2020.01.019
Mandala, S., Fuadah, Y. N., Arzaki, M., & Pambudi, F. E. (2017). Performance analysis of wavelet-based denoising techniques for ECG signal. 2017 5th International Conference on Information and Communication Technology (ICoIC7), 1–6. https://doi.org/10.1109/ICoICT.2017.8074701
Patro, K. K., Reddi, S. P. R., Khalelulla, S. K. E., Rajesh Kumar, P., & Shankar, K. (2020). ECG data optimization for biometric human recognition using statistical distributed machine learning algorithm. The Journal of Supercomputing, 76(2), 858–875. https://doi.org/10.1007/s11227-019-03022-1
Sakib, S., Ahmed, N., Kabir, A. J., & Ahmed, H. (2018). An Overview of Convolutional Neural Network: Its Architecture and Applications. https://doi.org/10.20944/PREPRINTS201811.0546.V1
Setiaji, A. (2018). Machine Learning : Acccuracy, Recall & Precision. https://mragungsetiaji.github.io/python/machine learning/2018/09/21/machine-learning-accuracy-recall-dan-precision.html
Wang, D., Si, Y., Yang, W., Zhang, G., & Li, J. (2019). A novel electrocardiogram biometric identification method based on temporal-frequency autoencoding. Electronics (Switzerland), 8(6), 1–24. https://doi.org/10.3390/electronics8060667
Xiong, Z., Stiles, M., & Zhao, J. (2017). Robust ECG Signal Classification for the Detection of Atrial Fibrillation Using Novel Neural Networks. https://doi.org/10.22489/CinC.2017.066-138
Xu, J., Li, T., Chen, Y., & Chen, W. (2018). Personal Identification by Convolutional Neural Network with ECG Signal. 2018 International Conference on Information and Communication Technology Convergence (ICTC), 559–563. https://doi.org/10.1109/ICTC.2018.8539632
Yuniarti, A. R., Rizal, S., & Lim, K. M. (n.d.). ECG Identification with One Dimensional Convolutional Neural Network.
Zhang, Y., Zhao, Z., Guo, C., Huang, J., & Xu, K. (2019). ECG Biometrics Method Based on Convolutional Neural Network and Transfer Learning. Proceedings - International Conference on Machine Learning and Cybernetics, 2019-July, 1–7. https://doi.org/10.1109/ICMLC48188.2019.8949218
DOI: https://doi.org/10.26760/mindjournal.v7i1.1-10
Refbacks
- Saat ini tidak ada refbacks.
____________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2528-0902
diterbitkan oleh:
Informatika Institut Teknologi Nasional Bandung
Alamat : Gedung 2 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 181)Â Fax. 7202892
Email : mind.journal@itenas.ac.id
____________________________________________________________
Statistik Pengunjung :
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.