Gated Recurrent Units dalam Mendeteksi Obstructive Sleep Apnea
Sari
Dalam melakukan penelitian obstructive sleep apnea (OSA), polysomnography (PSG) digunakan untuk diagnosis. Namun subjek diharuskan menginap dilaboratorium selama beberapa malam untuk melakukan tes dengan PSG dan karena banyaknya alat yang harus dikenakan pada tubuh dapat membuat tidak nyaman saat pengambilan data. Belakangan ini, beberapa peneliti mengunakan single-lead ECG untuk melakukan deteksi OSA. Untuk menghasilkan model terbaik, akan dilakukan eksperimen training, dengan batch normalization dan dropout yang berbeda. Pada penelitian ini apnea-ecg dataset digunakan, RR-Interval dan amplitudo QRS complex dari released set berjumlah 35 data akan disegmentasi permenit untuk digunakan sebagai input dari arsitektur yang diajukan adalah gated recurrent unit (GRU). Lalu withheld set berjumlah 35 data akan digunakan untuk pengujian per-segment dan per-recording. Kinerja sistem diukur berdasarkan accuracy, sensitifity, dan specificity dengan pengujian per-segment mendapat hasil accuracy 83.92%, sensitifity 81.28%, dan specificity 85.55%, dan pengujian per-recording mendapat hasil accuracy 97.14%, sensitifity 95.65% dan specificity 100%.
Kata kunci: Obstructive sleep apnea, GRU, ECG, RR-Interval, QRS complex.
AbstractIn conducting obstructive sleep apnea (OSA) studies, polysomnography (PSG) was used for the diagnosis. However, the subject was required to stay in the laboratory for several nights to carry out tests with the PSG and because of the many devices that had to be worn on the body, it could be uncomfortable to collect data. Recently, several researchers have used single-lead ECG to detect OSA. To produce the best model, training experiments will be conducted, with different batch normalization and dropout. In this study, the apnea-ecg dataset is used, the RR-Interval and the QRS complex amplitude from the released set totaling 35 data will be segmented per minute to be used as input for the proposed architecture is the gated recurrent unit (GRU). Then the withheld set of 35 data will be used for per-segment and per-recording testing. System performance was measured based on accuracy, sensitivity, and specificity with per-segment testing getting 83.92% accuracy, 81.28% sensitivity, and 85.55% specificity, and per-recording testing got 97.14% accuracy, 95.65% sensitivity and 100% specificity.
Keywords: Obstructive sleep apnea, GRU, ECG, RR-Interval, QRS complex.
Teks Lengkap:
PDFReferensi
Almutairi, H., Hassan, G. M., & Datta, A. (2021). Detection of obstructive sleep apnoea by ECG signals using deep learning architectures. European Signal Processing Conference, 2021-Janua, 1382–1386. https://doi.org/10.23919/Eusipco47968.2020.9287360
Bolin, E., & Lam, W. (2013). A review of sensitivity, specificity, and likelihood ratios: Evaluating the utility of the electrocardiogram as a screening tool in hypertrophic cardiomyopathy. Congenital Heart Disease, 8(5), 406–410. https://doi.org/10.1111/chd.12083
Brownlee, J. (2017). Gentle Introduction to the Adam Optimization Algorithm for Deep Learning. Neural Networks. https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 1–9. http://arxiv.org/abs/1412.3555
Darmadi, F., Rizal, A., & Sunarya, U. (2015). Deteksi Sleep Apnea Melalui Analisis Suara Dengkuran Dengan Metode Mel Frekuensi Cepstrum. 2(2), 2681–2686.
Hudgel, D. W. (2016). Sleep Apnea Severity Classification Revisited. Sleep, 39(5), 1165–1166. https://doi.org/10.5665/sleep.5776
Ioffe, S., & Szegedy, C. (2016). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Journalism Practice, 10(6), 730–743. https://doi.org/10.1080/17512786.2015.1058180
Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–15.
Kulkarni, A., Chong, D., & Batarseh, F. A. (2020). Foundations of data imbalance and solutions for a data democracy. In Data Democracy: At the Nexus of Artificial Intelligence, Software Development, and Knowledge Engineering. Elsevier Inc. https://doi.org/10.1016/B978-0-12-818366-3.00005-8
Le, X. H., Ho, H. V., Lee, G., & Jung, S. (2019). Application of Long Short-Term Memory (LSTM) neural network for flood forecasting. Water (Switzerland), 11(7). https://doi.org/10.3390/w11071387
Penzel, T., Moody, G. B., Mark, R. G., Goldberger, A. L., & Peter, J. H. (2000). Apnea-ECG database. Computers in Cardiology, 255–258.
Purwowiyoto, S. L. (2018). Obstructive Sleep Apnea dan Gagal Jantung. YARSI Medical Journal, 25(3), 172. https://doi.org/10.33476/jky.v25i3.364
Shen, G., Tan, Q., Zhang, H., Zeng, P., & Xu, J. (2018). Deep learning with gated recurrent unit networks for financial sequence predictions. Procedia Computer Science, 131, 895–903. https://doi.org/10.1016/j.procs.2018.04.298
Singh, D., Vinod, K., & Saxena, S. C. (2004). Sampling frequency of the RR interval time series for spectral analysis of heart rate variability. Journal of Medical Engineering and Technology, 28(6), 263–272. https://doi.org/10.1080/03091900410001662350
Song, C., Liu, K., Zhang, X., Chen, L., & Xian, X. (2016). An Obstructive Sleep Apnea Detection Approach Using a Discriminative Hidden Markov Model from ECG Signals. IEEE Transactions on Biomedical Engineering, 63(7), 1532–1542. https://doi.org/10.1109/TBME.2015.2498199
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (1993). Dropout: A Simple Way to Prevent Neural Networks from Overfittin. Physics Letters B, 299(3–4), 345–350. https://doi.org/10.1016/0370-2693(93)90272-J
Varon, C., Caicedo, A., Testelmans, D., Buyse, B., & Van Huffel, S. (2015). A Novel Algorithm for the Automatic Detection of Sleep Apnea from Single-Lead ECG. IEEE Transactions on Biomedical Engineering, 62(9), 2269–2278. https://doi.org/10.1109/TBME.2015.2422378
Wang, T., Lu, C., Shen, G., & Hong, F. (2019). Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network. PeerJ, 2019(9), 1–17. https://doi.org/10.7717/peerj.7731
DOI: https://doi.org/10.26760/mindjournal.v6i2.221-235
Refbacks
- Saat ini tidak ada refbacks.
____________________________________________________________
ISSN (cetak) : 2338-8323 | ISSN (elektronik) : 2528-0902
diterbitkan oleh:
Informatika Institut Teknologi Nasional Bandung
Alamat : Gedung 2 Jl. PHH. Mustofa 23 Bandung 40124
Kontak : Tel. 7272215 (ext. 181)Â Fax. 7202892
Email : mind.journal@itenas.ac.id
____________________________________________________________
Statistik Pengunjung :
Jurnal ini terlisensi oleh Creative Commons Attribution-ShareAlike 4.0 International License.